We construct special handle decompositions for a compact connected PL manifold with non empty boundary and study the associated topological invariants. As a consequence, we characterize the unknot in the (n+2)-sphere (n less or equal 2) as the unique n-knot whose complement has genus one. Then we obtain a simple geometric proof of the non cancellation theorem for tame n-knots in the (n+2)-sphere, for n less or equal 2.
Splittings of manifolds with boundary and related invariants / Cavicchioli, Alberto; Ruini, Beatrice. - In: RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE. - ISSN 0049-4704. - STAMPA. - 25 Fasc. I-II:(1993), pp. 67-87.
Splittings of manifolds with boundary and related invariants
CAVICCHIOLI, Alberto;RUINI, Beatrice
1993
Abstract
We construct special handle decompositions for a compact connected PL manifold with non empty boundary and study the associated topological invariants. As a consequence, we characterize the unknot in the (n+2)-sphere (n less or equal 2) as the unique n-knot whose complement has genus one. Then we obtain a simple geometric proof of the non cancellation theorem for tame n-knots in the (n+2)-sphere, for n less or equal 2.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris