We prove a decomposition theorem for closed connected homotopy equivalent smooth four-manifolds, which partially extends a recent result of Curtis, Freedman, Hsiang and Stong, Invent. Math., 123 (1996), to the non-simply connected case. Then we study the question of when a homotopy equivalence between closed smooth 4-manifolds is homotopic to a topological homeomorphism. In particular, we obtain a new proof of the well-known uniqueness of closed aspherical smooth 4-manifolds with good fundamental groups.
A splitting theorem for homotopy equivalent 4-manifolds / Cavicchioli, Alberto; F., Hegenbarth; Spaggiari, Fulvia. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 1120-7183. - STAMPA. - 17 Serie VII:(1997), pp. 523-539.
A splitting theorem for homotopy equivalent 4-manifolds
CAVICCHIOLI, Alberto;SPAGGIARI, Fulvia
1997
Abstract
We prove a decomposition theorem for closed connected homotopy equivalent smooth four-manifolds, which partially extends a recent result of Curtis, Freedman, Hsiang and Stong, Invent. Math., 123 (1996), to the non-simply connected case. Then we study the question of when a homotopy equivalence between closed smooth 4-manifolds is homotopic to a topological homeomorphism. In particular, we obtain a new proof of the well-known uniqueness of closed aspherical smooth 4-manifolds with good fundamental groups.File | Dimensione | Formato | |
---|---|---|---|
523-539.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
807.65 kB
Formato
Adobe PDF
|
807.65 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris