Within geometric topology of 3-manifolds (with or withoutboundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called "dipole moves". Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.

An equivalence criterion for 3-manifolds / Casali, Maria Rita. - In: REVISTA MATEMÁTICA DE LA UNIVERSIDAD COMPLUTENSE DE MADRID. - ISSN 0214-3577. - STAMPA. - 10:(1997), pp. 129-147.

An equivalence criterion for 3-manifolds

CASALI, Maria Rita
1997

Abstract

Within geometric topology of 3-manifolds (with or withoutboundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called "dipole moves". Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.
1997
10
129
147
An equivalence criterion for 3-manifolds / Casali, Maria Rita. - In: REVISTA MATEMÁTICA DE LA UNIVERSIDAD COMPLUTENSE DE MADRID. - ISSN 0214-3577. - STAMPA. - 10:(1997), pp. 129-147.
Casali, Maria Rita
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/450756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact