An oval Ω in a finite projective plane is said to be 2-transitive if the plane admits a collineation group G fixing Ω and acting 2-transitively on its points. In the order n of the plane is assumed to be even then the following result is proved.Theorem. If G fixes an external line and acts 2-transitively on Ω then either n ∈ {2, 4} or n ≡ 0 mod 8 and the Sylow 2-subgroups of G are generalized quaternion groups.The result is obtained by examining the action of G on a G-invariant family of pairwise disjoint ovals (including Ω) with a common knot.
On two-transitive ovals in projective planes of even order / Bonisoli, Arrigo; G., Korchmaros. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - STAMPA. - 65(1995), pp. 89-93.
Data di pubblicazione: | 1995 |
Titolo: | On two-transitive ovals in projective planes of even order |
Autore/i: | Bonisoli, Arrigo; G., Korchmaros |
Autore/i UNIMORE: | |
Rivista: | |
Volume: | 65 |
Pagina iniziale: | 89 |
Pagina finale: | 93 |
Codice identificativo Scopus: | 2-s2.0-26044455818 |
Citazione: | On two-transitive ovals in projective planes of even order / Bonisoli, Arrigo; G., Korchmaros. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - STAMPA. - 65(1995), pp. 89-93. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris