We prove the existence of infinitely many vector-valued Lipschitz-continuous functions u on an open set Ω satisfying suitable Dirichlet boundary conditions such that the singular values of the gradient matrix ∇u, agree a.e. on Ω with N given positive, bounded and lower semicontinuous functions.
Functions with prescribed singular values of the gradient / P., Celada; Perrotta, Stefania. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 5:(1998), pp. 383-396.
Functions with prescribed singular values of the gradient.
PERROTTA, Stefania
1998
Abstract
We prove the existence of infinitely many vector-valued Lipschitz-continuous functions u on an open set Ω satisfying suitable Dirichlet boundary conditions such that the singular values of the gradient matrix ∇u, agree a.e. on Ω with N given positive, bounded and lower semicontinuous functions.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris