We prove the existence of infinitely many vector-valued Lipschitz-continuous functions u on an open set Ω satisfying suitable Dirichlet boundary conditions such that the singular values of the gradient matrix ∇u, agree a.e. on Ω with N given positive, bounded and lower semicontinuous functions.

Functions with prescribed singular values of the gradient / P., Celada; Perrotta, Stefania. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 5:(1998), pp. 383-396.

Functions with prescribed singular values of the gradient.

PERROTTA, Stefania
1998

Abstract

We prove the existence of infinitely many vector-valued Lipschitz-continuous functions u on an open set Ω satisfying suitable Dirichlet boundary conditions such that the singular values of the gradient matrix ∇u, agree a.e. on Ω with N given positive, bounded and lower semicontinuous functions.
1998
5
383
396
Functions with prescribed singular values of the gradient / P., Celada; Perrotta, Stefania. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 5:(1998), pp. 383-396.
P., Celada; Perrotta, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/421692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact