Two molecular properties, the nuclear electromagnetic hypershielding and the gradient of the electric dipole–magnetic dipole polarizability have been calculated using the time-dependent Hartree–Fock method. Provided the Hellmann–Feynman theorem is satisfied, these quantities are equivalent and are related through the IG =eZI, I relation, where ZI is theatomic number of atom I and e the magnitude of the electron charge. In such a case, the determination of the nuclear electromagnetic hypershielding presents the computational advantage over the evaluation of the gradient of G of requiring only the knowledge of nine mixed second-order derivatives of the density matrix with respect to both electric and magnetic fields instead of the 3N N is the number of atoms derivatives of the density matrix withrespect to the Cartesian coordinates DI. It is shown here for the H2O2 molecule that very largebasis sets such as the aug-cc-pVQZ or the R12 basis are required to satisfy the Hellmann–Feynmantheorem. These basis set requirements have been substantiated by considering the correspondingrototranslational sum rules. The origin dependence of the rototranslational sum rules for the gradientof G has then been theoretically described and verified for the H2O2 molecule.

Rototranslational sum rules for electromagnetic hypershielding at the nuclei and the related atomic Cartesian derivatives of the optical rotatory powe / VINCENT, LIEGEOIS; BENOIT, CHAMPAGNE; LAZZERETTI, Paolo. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - STAMPA. - 128:(2008), pp. 244107-1-244107-10. [10.1063/1.2943139]

Rototranslational sum rules for electromagnetic hypershielding at the nuclei and the related atomic Cartesian derivatives of the optical rotatory powe

LAZZERETTI, Paolo
2008-01-01

Abstract

Two molecular properties, the nuclear electromagnetic hypershielding and the gradient of the electric dipole–magnetic dipole polarizability have been calculated using the time-dependent Hartree–Fock method. Provided the Hellmann–Feynman theorem is satisfied, these quantities are equivalent and are related through the IG =eZI, I relation, where ZI is theatomic number of atom I and e the magnitude of the electron charge. In such a case, the determination of the nuclear electromagnetic hypershielding presents the computational advantage over the evaluation of the gradient of G of requiring only the knowledge of nine mixed second-order derivatives of the density matrix with respect to both electric and magnetic fields instead of the 3N N is the number of atoms derivatives of the density matrix withrespect to the Cartesian coordinates DI. It is shown here for the H2O2 molecule that very largebasis sets such as the aug-cc-pVQZ or the R12 basis are required to satisfy the Hellmann–Feynmantheorem. These basis set requirements have been substantiated by considering the correspondingrototranslational sum rules. The origin dependence of the rototranslational sum rules for the gradientof G has then been theoretically described and verified for the H2O2 molecule.
128
244107-1
244107-10
Rototranslational sum rules for electromagnetic hypershielding at the nuclei and the related atomic Cartesian derivatives of the optical rotatory powe / VINCENT, LIEGEOIS; BENOIT, CHAMPAGNE; LAZZERETTI, Paolo. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - STAMPA. - 128:(2008), pp. 244107-1-244107-10. [10.1063/1.2943139]
VINCENT, LIEGEOIS; BENOIT, CHAMPAGNE; LAZZERETTI, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/421571
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact