In this paper we analyze an interior point method for solving perturbed Karush-Kuhn-Tucker systems in the framework of inexact Newton methods. This gives the possibility to revise the method to introduce an adaptive technique for changing the perturbation parameter and an inner linear solver for determining an approximate solution of the perturbed Newton equation. It makes the method more robust and highly effective for large-scale optimization problems, as those that occur in data fitting applications and in the discretization of optimal control problems governed by partial differential equations.

Analysis of the convergence of an inexact Newton method for solving Karush-Kuhn-Tucker systems / Galligani, Emanuele. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DEL'UNIVERSITÀ DI MODENA E REGGIO EMILIA. - ISSN 1825-1269. - STAMPA. - LII:(2004), pp. 331-368.

Analysis of the convergence of an inexact Newton method for solving Karush-Kuhn-Tucker systems

GALLIGANI, Emanuele
2004

Abstract

In this paper we analyze an interior point method for solving perturbed Karush-Kuhn-Tucker systems in the framework of inexact Newton methods. This gives the possibility to revise the method to introduce an adaptive technique for changing the perturbation parameter and an inner linear solver for determining an approximate solution of the perturbed Newton equation. It makes the method more robust and highly effective for large-scale optimization problems, as those that occur in data fitting applications and in the discretization of optimal control problems governed by partial differential equations.
2004
LII
331
368
Analysis of the convergence of an inexact Newton method for solving Karush-Kuhn-Tucker systems / Galligani, Emanuele. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DEL'UNIVERSITÀ DI MODENA E REGGIO EMILIA. - ISSN 1825-1269. - STAMPA. - LII:(2004), pp. 331-368.
Galligani, Emanuele
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/421271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact