This paper concerns with the solution of optimal control problems by means of nonlinear programming methods. The direct transcription,by finite difference approximation, of the optimal control problem into a finite dimensional nonlinear programming problem is described.An iterative procedure for the solution of this nonlinear program is presented. An extensive numerical analysis of the behaviour of the method isreported on boundary control and distributed control problems with boundary conditions of Dirichlet or Neumann or mixed type.

Iterative solution of elliptic control problems with control and state constraints / Galligani, Emanuele. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DEL'UNIVERSITÀ DI MODENA E REGGIO EMILIA. - ISSN 1825-1269. - STAMPA. - LIII:(2005), pp. 365-408.

Iterative solution of elliptic control problems with control and state constraints

GALLIGANI, Emanuele
2005

Abstract

This paper concerns with the solution of optimal control problems by means of nonlinear programming methods. The direct transcription,by finite difference approximation, of the optimal control problem into a finite dimensional nonlinear programming problem is described.An iterative procedure for the solution of this nonlinear program is presented. An extensive numerical analysis of the behaviour of the method isreported on boundary control and distributed control problems with boundary conditions of Dirichlet or Neumann or mixed type.
LIII
365
408
Iterative solution of elliptic control problems with control and state constraints / Galligani, Emanuele. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DEL'UNIVERSITÀ DI MODENA E REGGIO EMILIA. - ISSN 1825-1269. - STAMPA. - LIII:(2005), pp. 365-408.
Galligani, Emanuele
File in questo prodotto:
File Dimensione Formato  
Galligani_AttiMO2005.pdf

non disponibili

Tipologia: Pre-print dell'autore (bozza pre referaggio)
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/421270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact