The excitonic effects on the optical absorption properties of organic semiconductors as well as gallium nitride are studied from first-principles. The Coulomb interaction between the electron and the hole is accounted for by solving the two-particle Bethe-Salpeter Equation. In the organic semiconductors the exciton binding energies strongly depend on the molecular size, the crystalline packing, as well as the polarization direction of the incoming light. We show that the electron-hole interaction can lead to strongly bound excitons with binding energies of the order of 1 eV or to a mere redistribution of oscillator strength. In several cases, the screening is efficient enough such that free charge carriers govern the optical absorption process. In the inorganic counterparts the sensitivity of the exciton binding energy is tested against the structural parameters and the screening of the electron-hole Coulomb interaction.
Ab-initio study of excitonic effects in conventional and organic semiconductors / Hummer, K; Ambrosch Draxl, C; Bussi, G; Ruini, Alice; Caldas, Mj; Molinari, Elisa; Laskowski, R; Christensen, Ne. - In: PHYSICA STATUS SOLIDI B-BASIC RESEARCH. - ISSN 0370-1972. - ELETTRONICO. - 242:9(2005), pp. 1754-1758. [10.1002/pssb.200461785]
Ab-initio study of excitonic effects in conventional and organic semiconductors
RUINI, Alice;MOLINARI, Elisa;
2005
Abstract
The excitonic effects on the optical absorption properties of organic semiconductors as well as gallium nitride are studied from first-principles. The Coulomb interaction between the electron and the hole is accounted for by solving the two-particle Bethe-Salpeter Equation. In the organic semiconductors the exciton binding energies strongly depend on the molecular size, the crystalline packing, as well as the polarization direction of the incoming light. We show that the electron-hole interaction can lead to strongly bound excitons with binding energies of the order of 1 eV or to a mere redistribution of oscillator strength. In several cases, the screening is efficient enough such that free charge carriers govern the optical absorption process. In the inorganic counterparts the sensitivity of the exciton binding energy is tested against the structural parameters and the screening of the electron-hole Coulomb interaction.File | Dimensione | Formato | |
---|---|---|---|
1754_ftp.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
120.55 kB
Formato
Adobe PDF
|
120.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris