We present an algorithmic and combinatorial proof of the following well-known theorem, originally proved by Rohlin: `Every closed orientable 3-manifold $M^3$ bounds a simply connected orientable 4-manifold $M^4$.' More precisely, an edge-coloured graph representing $M^4$ is obtained as the final result of a finite and well-determined sequence of `admissible moves', starting from any given edge-coloured graph representing $M^3$.

A combinatorial proof of Rohlin Theorem / Casali, Maria Rita; Gagliardi, Carlo. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - STAMPA. - 64:(3)(1997), pp. 297-310. [10.1023/A:1004992928943]

A combinatorial proof of Rohlin Theorem

CASALI, Maria Rita;GAGLIARDI, Carlo
1997

Abstract

We present an algorithmic and combinatorial proof of the following well-known theorem, originally proved by Rohlin: `Every closed orientable 3-manifold $M^3$ bounds a simply connected orientable 4-manifold $M^4$.' More precisely, an edge-coloured graph representing $M^4$ is obtained as the final result of a finite and well-determined sequence of `admissible moves', starting from any given edge-coloured graph representing $M^3$.
64
(3)
297
310
A combinatorial proof of Rohlin Theorem / Casali, Maria Rita; Gagliardi, Carlo. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - STAMPA. - 64:(3)(1997), pp. 297-310. [10.1023/A:1004992928943]
Casali, Maria Rita; Gagliardi, Carlo
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/310430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact