Abstract We present a first study concerning the optimization of a non linear fuzzy function f depending both on a crisp variable and a fuzzy number: therefore the function value is a fuzzy number. More specifically, given a real fuzzy number à and the function f(a,x), we consider the fuzzy extension induced by f. If K is a convex subset of R, the problem we consider is "maximizing" f¨(Ã,x) on K. The first problem is the meaning of the word "maximizing": in fact it is well-known that ranking fuzzy numbers is a complex matter. Following a general method, we introduce a real function (evaluation function) on real fuzzy numbers, in order to get a crisp rating, induced by the order of the real line. In such a way, the optimization problem on fuzzy numbers can be written in terms of an optimization problem for the real-valued function obtained by composition of f with a suitable evaluation function. This approach allows us to state a necessary and sufficient condition in order that it exists the maximum for f¨ in K, when f(a,x) is convex-concave .
Optimisation of a non linear fuzzy function / Facchinetti, Gisella; S., Giove; Pacchiarotti, Nicoletta. - In: SOFT COMPUTING. - ISSN 1432-7643. - STAMPA. - 6 (6)(2002), pp. 476-480.
Data di pubblicazione: | 2002 |
Titolo: | Optimisation of a non linear fuzzy function |
Autore/i: | Facchinetti, Gisella; S., Giove; Pacchiarotti, Nicoletta |
Autore/i UNIMORE: | |
Rivista: | |
Volume: | 6 (6) |
Pagina iniziale: | 476 |
Pagina finale: | 480 |
Citazione: | Optimisation of a non linear fuzzy function / Facchinetti, Gisella; S., Giove; Pacchiarotti, Nicoletta. - In: SOFT COMPUTING. - ISSN 1432-7643. - STAMPA. - 6 (6)(2002), pp. 476-480. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris