In this paper, glycosaminoglycans from the body of the large freshwater mollusc bivalve Anodonta anodonta were recovered at about 0.6 mg/g of dry tissue, composed of chondroitin sulfate (approximately 38%), nonsulfated chondroitin (about 21%), and heparin (41%). This last polysaccharide was found to consist of a large percentage (approximately 88%) of a fast-moving species possessing a lower molecular mass and sulfate group amount and about 12% of a more sulfated, slow-moving component having a greater molecular mass. The chondroitin sulfate was composed of approximately 28% of the 6-sulfated disaccharide, 46% of the 4-sulfated disaccharide, and about 26% of the nonsulfated disaccharide, with a charge density value of 0.74. Heparin was subjected to the oligosaccharide mapping after treatment with heparinase and then separation of the resulting unsaturated oligosaccharides by SAX-HPLC. A heparin sample from Anodonta anodonta showed a degree of sulfation similar to that of bovine mucosal heparin because of the presence of approximately the same mol % of the trisulfated disaccharide (Delta UA2S(1 -> 4)-alpha-D-GlcN2S6S), a slight modification of the other oligosaccharides, and a significant increase of the disaccharide bearing the sulfate group in position 3 of the N-sulfoglucosamine 6-sulfate (-> 4)-beta-D-GIcA(1 -> 4)-alpha-D-GlcN2S3S6S(1 ->) part of the ATIII-binding region. However, the anticoagulant activity of mollusc heparin was quite similar to that of pharmaceutical grade heparin. The data obtained again emphasize the heterogeneity of GAGs from molluscs.

Glycosaminoglycan composition of the large freshwater mollusc bivalve Anodonta anodonta / Volpi, Nicola; Maccari, Francesca. - In: BIOMACROMOLECULES. - ISSN 1525-7797. - STAMPA. - 6:6(2005), pp. 3174-3180. [10.1021/bm0505033]

Glycosaminoglycan composition of the large freshwater mollusc bivalve Anodonta anodonta

VOLPI, Nicola;MACCARI, Francesca
2005

Abstract

In this paper, glycosaminoglycans from the body of the large freshwater mollusc bivalve Anodonta anodonta were recovered at about 0.6 mg/g of dry tissue, composed of chondroitin sulfate (approximately 38%), nonsulfated chondroitin (about 21%), and heparin (41%). This last polysaccharide was found to consist of a large percentage (approximately 88%) of a fast-moving species possessing a lower molecular mass and sulfate group amount and about 12% of a more sulfated, slow-moving component having a greater molecular mass. The chondroitin sulfate was composed of approximately 28% of the 6-sulfated disaccharide, 46% of the 4-sulfated disaccharide, and about 26% of the nonsulfated disaccharide, with a charge density value of 0.74. Heparin was subjected to the oligosaccharide mapping after treatment with heparinase and then separation of the resulting unsaturated oligosaccharides by SAX-HPLC. A heparin sample from Anodonta anodonta showed a degree of sulfation similar to that of bovine mucosal heparin because of the presence of approximately the same mol % of the trisulfated disaccharide (Delta UA2S(1 -> 4)-alpha-D-GlcN2S6S), a slight modification of the other oligosaccharides, and a significant increase of the disaccharide bearing the sulfate group in position 3 of the N-sulfoglucosamine 6-sulfate (-> 4)-beta-D-GIcA(1 -> 4)-alpha-D-GlcN2S3S6S(1 ->) part of the ATIII-binding region. However, the anticoagulant activity of mollusc heparin was quite similar to that of pharmaceutical grade heparin. The data obtained again emphasize the heterogeneity of GAGs from molluscs.
2005
6
6
3174
3180
Glycosaminoglycan composition of the large freshwater mollusc bivalve Anodonta anodonta / Volpi, Nicola; Maccari, Francesca. - In: BIOMACROMOLECULES. - ISSN 1525-7797. - STAMPA. - 6:6(2005), pp. 3174-3180. [10.1021/bm0505033]
Volpi, Nicola; Maccari, Francesca
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/310200
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact