The aim of the present work was the determination of the fracture mechanisms in glass-alumina functionally graded materials (FGMs). The investigation was performed by means of a combined approach based on microscale computational simulations, which provided for an accurate modelling of the actual FGM microstructure, and experimental analysis. The numerical results proved that microstructural defects, such as pores, deeply influenced the damage evolution. On the contrary, the minimization of the mismatch in the coefficients of thermal expansion of the ingredient materials allowed to obtain low thermal residual stresses, which did not relevantly affect the crack propagation. In order to support the numerical model, microindentation tests were performed on the cross-section of FGM specimens and the experimentally observed crack paths were compared to the computationally predicted ones. (c) 2005 Elsevier Ltd. All rights reserved.

Microstructure-based modelling and experimental investigation of crack propagation in glass-alumina functionally graded materials / Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Siligardi, Cristina; Sola, Antonella. - In: JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. - ISSN 0955-2219. - STAMPA. - 26(2006), pp. 3067-3073.

Microstructure-based modelling and experimental investigation of crack propagation in glass-alumina functionally graded materials

CANNILLO, Valeria;MANFREDINI, Tiziano;MONTORSI, Monia;SILIGARDI, Cristina;SOLA, Antonella
2006

Abstract

The aim of the present work was the determination of the fracture mechanisms in glass-alumina functionally graded materials (FGMs). The investigation was performed by means of a combined approach based on microscale computational simulations, which provided for an accurate modelling of the actual FGM microstructure, and experimental analysis. The numerical results proved that microstructural defects, such as pores, deeply influenced the damage evolution. On the contrary, the minimization of the mismatch in the coefficients of thermal expansion of the ingredient materials allowed to obtain low thermal residual stresses, which did not relevantly affect the crack propagation. In order to support the numerical model, microindentation tests were performed on the cross-section of FGM specimens and the experimentally observed crack paths were compared to the computationally predicted ones. (c) 2005 Elsevier Ltd. All rights reserved.
26
3067
3073
Microstructure-based modelling and experimental investigation of crack propagation in glass-alumina functionally graded materials / Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Siligardi, Cristina; Sola, Antonella. - In: JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. - ISSN 0955-2219. - STAMPA. - 26(2006), pp. 3067-3073.
Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Siligardi, Cristina; Sola, Antonella
File in questo prodotto:
File Dimensione Formato  
microstructurebased.pdf

non disponibili

Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 529.34 kB
Formato Adobe PDF
529.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/309947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 27
social impact