A new kind of metadata offers a synthesized view of an attribute's values for a user to exploit when creating or refining a search query in data-integration systems. The extraction technique that obtains these values is automatic and independent of an attribute domain but parameterized with various metrics for similarity measures. The authors describe a fully implemented prototype and some experimental results to show the effectiveness of "relevant values" when searching a knowledge base.
A new kind of metadata offers a synthesized view of an attribute's values for a user to exploit when creating or refining a search query in data-integration systems. The extraction technique that obtains these values is automatic and independent of an attribute domain but parameterized with various metrics for similarity measures. The authors describe a fully implemented prototype and some experimental results to show the effectiveness of "relevant values" when searching a knowledge base. © 2007 IEEE.
Extracting Relevant Attribute Values for Improved Search / Bergamaschi, Sonia; Guerra, Francesco; Orsini, Mirko; C., Sartori. - In: IEEE INTERNET COMPUTING. - ISSN 1089-7801. - STAMPA. - 11:5(2007), pp. 26-35. [10.1109/MIC.2007.105]
Extracting Relevant Attribute Values for Improved Search
BERGAMASCHI, Sonia;GUERRA, Francesco;ORSINI, Mirko;
2007
Abstract
A new kind of metadata offers a synthesized view of an attribute's values for a user to exploit when creating or refining a search query in data-integration systems. The extraction technique that obtains these values is automatic and independent of an attribute domain but parameterized with various metrics for similarity measures. The authors describe a fully implemented prototype and some experimental results to show the effectiveness of "relevant values" when searching a knowledge base. © 2007 IEEE.File | Dimensione | Formato | |
---|---|---|---|
IEEE2007.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
286.13 kB
Formato
Adobe PDF
|
286.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris