The presence and the different functional aspects of cytokine-related molecules in invertebrates are described. Cytokine-like factors affect immune functions, such as cell motility, chemotaxis, phagocytosis and cytotoxicity. In particular, cell migration shows a species-specific effect for IL-1alpha and TNF-alpha and a dose-correlated effect for IL-8, PDGF-AB and TGF-beta1. Apart from some exceptions, the phagocytic effect increases significantly at all the concentrations tested and with all the species used. PDGF-AB, TGF-beta1 and IL-8 provoke conformational changes in mollusk immunocytes, involving the signaling transduction pathways of phosphatidylinositol and cAMP. PDGF-AB and TGF-beta1 partially inhibit the induced programmed cell death in an insect cell line, and the survival effect is mediated by the activation of phosphatidylinositol 3-kinase, PKA and PKC. The exogenous administration of these growth factors in an invertebrate wound repair model showed that they are able to control the wound environment and promote the repair process by accelerating the coordinated activities involved. Moreover, IL-1alpha, IL-2 and TNF-alpha are able to induce nitric oxide synthase. PDGF-AB and TGF-beta1 provoke an increase in neutral endopeptidase-24.11 (NEP)-like activity in membrane preparations from mollusk immunocytes, while NEP deactivates the PDGF-AB- and TGF-beta1-induced cell shape changes. Cytokines are also involved in invertebrate stress response in a manner extremely similar to that in vertebrates. Several studies suggest the existence on the mollusk immunocyte membrane of an ancestral receptor capable of binding both IL-2 and CRH. Furthermore, the competition found between CRH and a large number of cytokines supports the idea that invertebrate cytokine receptors show a certain degree of promiscuity. The multiple functions of cytokines detected in invertebrates underline another characteristic of mammalian cytokines, i.e. their great pleiotropicity. Altogether, the studies on the function of the invertebrate humoral factors show a close overlapping with those found in vertebrates, and the hypothesized missing correlation between invertebrate and vertebrate cytokine genes that is emerging from the limited molecular biology data present in literature might represent a very peculiar strategy followed by Nature in the evolution of cytokines.

Invertebrate humoral factors: cytokines as mediators of cell survival / Ottaviani, Enzo; Malagoli, Davide; Franchini, Antonella. - STAMPA. - 34:(2004), pp. 1-25. [10.1007/978-3-642-18670-7_1]

Invertebrate humoral factors: cytokines as mediators of cell survival

OTTAVIANI, Enzo;MALAGOLI, Davide;FRANCHINI, Antonella
2004

Abstract

The presence and the different functional aspects of cytokine-related molecules in invertebrates are described. Cytokine-like factors affect immune functions, such as cell motility, chemotaxis, phagocytosis and cytotoxicity. In particular, cell migration shows a species-specific effect for IL-1alpha and TNF-alpha and a dose-correlated effect for IL-8, PDGF-AB and TGF-beta1. Apart from some exceptions, the phagocytic effect increases significantly at all the concentrations tested and with all the species used. PDGF-AB, TGF-beta1 and IL-8 provoke conformational changes in mollusk immunocytes, involving the signaling transduction pathways of phosphatidylinositol and cAMP. PDGF-AB and TGF-beta1 partially inhibit the induced programmed cell death in an insect cell line, and the survival effect is mediated by the activation of phosphatidylinositol 3-kinase, PKA and PKC. The exogenous administration of these growth factors in an invertebrate wound repair model showed that they are able to control the wound environment and promote the repair process by accelerating the coordinated activities involved. Moreover, IL-1alpha, IL-2 and TNF-alpha are able to induce nitric oxide synthase. PDGF-AB and TGF-beta1 provoke an increase in neutral endopeptidase-24.11 (NEP)-like activity in membrane preparations from mollusk immunocytes, while NEP deactivates the PDGF-AB- and TGF-beta1-induced cell shape changes. Cytokines are also involved in invertebrate stress response in a manner extremely similar to that in vertebrates. Several studies suggest the existence on the mollusk immunocyte membrane of an ancestral receptor capable of binding both IL-2 and CRH. Furthermore, the competition found between CRH and a large number of cytokines supports the idea that invertebrate cytokine receptors show a certain degree of promiscuity. The multiple functions of cytokines detected in invertebrates underline another characteristic of mammalian cytokines, i.e. their great pleiotropicity. Altogether, the studies on the function of the invertebrate humoral factors show a close overlapping with those found in vertebrates, and the hypothesized missing correlation between invertebrate and vertebrate cytokine genes that is emerging from the limited molecular biology data present in literature might represent a very peculiar strategy followed by Nature in the evolution of cytokines.
2004
Progress in molecular and subcellular biology
GERMANIA
Invertebrate humoral factors: cytokines as mediators of cell survival / Ottaviani, Enzo; Malagoli, Davide; Franchini, Antonella. - STAMPA. - 34:(2004), pp. 1-25. [10.1007/978-3-642-18670-7_1]
Ottaviani, Enzo; Malagoli, Davide; Franchini, Antonella
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/309689
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 59
  • ???jsp.display-item.citation.isi??? ND
social impact