In: Tissue and cell.Various cellular and humoral activities of the wound repair process and the effects of PDGF-AB and TGF-β1 on tissue repair mechanisms in the mollusc Limax maximus are studied by histological and immunocytochemical procedures. Histological examination at different times after the wound production demonstrates that tissue repair is the result of successive and related activities distinguishable by different morphological pictures. In the first hours, an infiltration phase is activated 24 h after the incision, hemocytes stratify at wound margins and actively phagocitize cell debris and damaged tissue in the surrounding area. Moreover, the cells are immunoreactive to anti-IL–1α, IL–8 and TNF–α antibodies. After 24–72 h, granulation tissue rich in small blood lacunae is formed and the provisional matrix is synthesized and deposited on the base of the new tissue. In histological sections 72 h after injury, the incision is filled with granulation tissue, and at the wound base, a layer of fibrous connective tissue is formed. Hemocytes present in the newly formed blood lacunae and fibroblasts are involved in the synthesis and deposit of extracellular matrix components, i.e. fibronectin, reticular and collagen fibres. Ninety-six h after wound production, the repair process continues and the granulation tissue is more developed. At 192 h, re-epithelialization begins, and this is more evident in the histological sections after 14 days. Hemocytes are immunoreactive to the cytokines at all the times examined. Exogenous administration of PDGF–AB and TGF–β1 stimulates the tissue healing process through a general acceleration of the activities involved. A larger closing area of clumped hemocytes and a smaller damaged tissue area are observed 24 h after treatment of the wound. At 72 h, the granulation tissue is more developed and more extracellular matrix components are deposited than in the control incision. A larger number of cells express cytokine-like molecules, and re-epithelialization of the wound is accelerated, as 14 days after growth factor treatments almost all the wound area is covered by a layer of cubic epithelial cells, and the alcianophilic cell coat is restored. No differences in the responses of the two growth factors are observed.

Repair of molluscan tissue injury: role of PDGF and TGF-beta / Franchini, Antonella; Ottaviani, Enzo. - In: TISSUE & CELL. - ISSN 0040-8166. - STAMPA. - 32:(2000), pp. 312-321.

Repair of molluscan tissue injury: role of PDGF and TGF-beta

FRANCHINI, Antonella;OTTAVIANI, Enzo
2000

Abstract

In: Tissue and cell.Various cellular and humoral activities of the wound repair process and the effects of PDGF-AB and TGF-β1 on tissue repair mechanisms in the mollusc Limax maximus are studied by histological and immunocytochemical procedures. Histological examination at different times after the wound production demonstrates that tissue repair is the result of successive and related activities distinguishable by different morphological pictures. In the first hours, an infiltration phase is activated 24 h after the incision, hemocytes stratify at wound margins and actively phagocitize cell debris and damaged tissue in the surrounding area. Moreover, the cells are immunoreactive to anti-IL–1α, IL–8 and TNF–α antibodies. After 24–72 h, granulation tissue rich in small blood lacunae is formed and the provisional matrix is synthesized and deposited on the base of the new tissue. In histological sections 72 h after injury, the incision is filled with granulation tissue, and at the wound base, a layer of fibrous connective tissue is formed. Hemocytes present in the newly formed blood lacunae and fibroblasts are involved in the synthesis and deposit of extracellular matrix components, i.e. fibronectin, reticular and collagen fibres. Ninety-six h after wound production, the repair process continues and the granulation tissue is more developed. At 192 h, re-epithelialization begins, and this is more evident in the histological sections after 14 days. Hemocytes are immunoreactive to the cytokines at all the times examined. Exogenous administration of PDGF–AB and TGF–β1 stimulates the tissue healing process through a general acceleration of the activities involved. A larger closing area of clumped hemocytes and a smaller damaged tissue area are observed 24 h after treatment of the wound. At 72 h, the granulation tissue is more developed and more extracellular matrix components are deposited than in the control incision. A larger number of cells express cytokine-like molecules, and re-epithelialization of the wound is accelerated, as 14 days after growth factor treatments almost all the wound area is covered by a layer of cubic epithelial cells, and the alcianophilic cell coat is restored. No differences in the responses of the two growth factors are observed.
32
312
321
Repair of molluscan tissue injury: role of PDGF and TGF-beta / Franchini, Antonella; Ottaviani, Enzo. - In: TISSUE & CELL. - ISSN 0040-8166. - STAMPA. - 32:(2000), pp. 312-321.
Franchini, Antonella; Ottaviani, Enzo
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/308910
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 57
social impact