Light-matter interactions in organic conjugated materials have always been of great interest due to their rich abosorption and emission acitivity, and their versatility in, or near, the visible range. The complexity of the molecular structure itself, particularly when assembled in solid-state films or crystals, has precluded theoretical srudies based on realistic models. We here present a study of the behavior of organic structures composed of thienyl units (SC4H2), in two different assemblages: finite oligothiophenes, including one functionalised unit (O2SC4H2), and in infinite polythiophene chains, assembled three-dimenasionally in the realistic herringbone crystalline packing. To do that, we use two different approaches to obtain the excited states of the system, each appropriate to the system under study. We find that subtle symmetry properties are ,in both cases, responsible for dramatic effects in emissive efficiency.

Optical properties of organic materials: from single molecules to solid state / Ruini, Alice; Mj, Caldas; G., Bussi; A., Ferretti; Bm, Silva; Goldoni, Guido; Molinari, Elisa. - STAMPA. - (2002), pp. 155-173.

Optical properties of organic materials: from single molecules to solid state

RUINI, Alice;GOLDONI, Guido;MOLINARI, Elisa
2002

Abstract

Light-matter interactions in organic conjugated materials have always been of great interest due to their rich abosorption and emission acitivity, and their versatility in, or near, the visible range. The complexity of the molecular structure itself, particularly when assembled in solid-state films or crystals, has precluded theoretical srudies based on realistic models. We here present a study of the behavior of organic structures composed of thienyl units (SC4H2), in two different assemblages: finite oligothiophenes, including one functionalised unit (O2SC4H2), and in infinite polythiophene chains, assembled three-dimenasionally in the realistic herringbone crystalline packing. To do that, we use two different approaches to obtain the excited states of the system, each appropriate to the system under study. We find that subtle symmetry properties are ,in both cases, responsible for dramatic effects in emissive efficiency.
Radiation-Matter interaction in confined systems
9788874380046
SIF
ITALIA
Optical properties of organic materials: from single molecules to solid state / Ruini, Alice; Mj, Caldas; G., Bussi; A., Ferretti; Bm, Silva; Goldoni, Guido; Molinari, Elisa. - STAMPA. - (2002), pp. 155-173.
Ruini, Alice; Mj, Caldas; G., Bussi; A., Ferretti; Bm, Silva; Goldoni, Guido; Molinari, Elisa
File in questo prodotto:
File Dimensione Formato  
Ruini in Radiation-Matter interaction in confined systems

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/308457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact