Safety in industrial process and production plants is a concern of rising importance, especially if people would be endangered by a catastrophic system failure. On the other hand, because the control devices which are now exploited to improve the overall performance of industrial processes include both sophisticated digital system design techniques and complex hardware (input-output sensors, actuators, components and processing units), there is an increased probability of failure. As a direct consequence of this, control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions as early as possible. One of the most promising methods for solving this problem is the "analytical redundancy" approach, in which residual signals are obtained. The basic idea consists of using an accurate model of the system to mimic the real process behaviour. If a fault occurs, the residual signal, i.e., the difference between real system and model behaviours, can be used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification. The problem is treated in all its aspects covering: * choice of model structure; * parameter identification; * residual generation; * fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques. Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques will be of interest to researchers in control and fault identification. Industrial control engineers interested in applying the latest methods in fault diagnosis will benefit from the practical examples and case studies.

Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques / S., Simani; Fantuzzi, Cesare; Rj, Patton. - STAMPA. - (2003), pp. 1-200.

Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques

FANTUZZI, Cesare;
2003

Abstract

Safety in industrial process and production plants is a concern of rising importance, especially if people would be endangered by a catastrophic system failure. On the other hand, because the control devices which are now exploited to improve the overall performance of industrial processes include both sophisticated digital system design techniques and complex hardware (input-output sensors, actuators, components and processing units), there is an increased probability of failure. As a direct consequence of this, control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions as early as possible. One of the most promising methods for solving this problem is the "analytical redundancy" approach, in which residual signals are obtained. The basic idea consists of using an accurate model of the system to mimic the real process behaviour. If a fault occurs, the residual signal, i.e., the difference between real system and model behaviours, can be used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification. The problem is treated in all its aspects covering: * choice of model structure; * parameter identification; * residual generation; * fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques. Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques will be of interest to researchers in control and fault identification. Industrial control engineers interested in applying the latest methods in fault diagnosis will benefit from the practical examples and case studies.
9781852336851
Springer
REGNO UNITO DI GRAN BRETAGNA
Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques / S., Simani; Fantuzzi, Cesare; Rj, Patton. - STAMPA. - (2003), pp. 1-200.
S., Simani; Fantuzzi, Cesare; Rj, Patton
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/308353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact