This paper is devoted to the study of orientable closed 3-manifolds uniformized by cyclically presented groups, introduced by Sieradski in Invent. Math. 84 (1986) and by certain generalizations of them. It is shown that these manifolds are cyclic coverings of the 3-sphere branched over torus knots. This answers in the affirmative an open question suggested by the referee of the quoted paper and recovers the main theorem of a paper of R. Thomas published in Bull. Korean Math. Soc. 28 (1991).

A geometric study of Sieradski groups / Cavicchioli, Alberto; F., Hegenbarth; Ac, Kim. - In: ALGEBRA COLLOQUIUM. - ISSN 1005-3867. - STAMPA. - 5 (2):(1998), pp. 203-217.

A geometric study of Sieradski groups

CAVICCHIOLI, Alberto;
1998

Abstract

This paper is devoted to the study of orientable closed 3-manifolds uniformized by cyclically presented groups, introduced by Sieradski in Invent. Math. 84 (1986) and by certain generalizations of them. It is shown that these manifolds are cyclic coverings of the 3-sphere branched over torus knots. This answers in the affirmative an open question suggested by the referee of the quoted paper and recovers the main theorem of a paper of R. Thomas published in Bull. Korean Math. Soc. 28 (1991).
5 (2)
203
217
A geometric study of Sieradski groups / Cavicchioli, Alberto; F., Hegenbarth; Ac, Kim. - In: ALGEBRA COLLOQUIUM. - ISSN 1005-3867. - STAMPA. - 5 (2):(1998), pp. 203-217.
Cavicchioli, Alberto; F., Hegenbarth; Ac, Kim
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/307466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact