The synthetic-computational approach to the study of the binding site of peripheral benzodiazepine receptor (PBR) ligands related to 1-(2-chlorophenyl) -N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195, 1) within their receptor (Cappelli et al. J. Med. Chem. 1997, 40, 2910-2921) has been extended. A series of carboxamide derivatives endowed with differently substituted planar aromatic or heteroaromatic systems was designed with the aim of getting further information on the topological requisites of the carbonyl and aromatic moieties for interaction with the PER binding site. The synthesis of most of these compounds involves Weinreb amidation of the appropriate lactone as the key step. The most potent compound, among the newly synthesized ones, shows a nanomolar PER affinity similar to that shown by I and the presence of a basic N-ethyl-N-benzylaminomethyl group in S-position of the quinoline nucleus. Thus, it may be considered the first example of a new class of water soluble derivatives of 1. Several computational methods were used to furnish descriptors of the isolated ligands (indirect approaches) able to rationalize the variation in the binding affinity of the enlarged series of compounds. Sound QSAR models are obtained by size and shape descriptors (volume approach) which codify for the short-range contributions to Ligand-receptor interactions. Molecular descriptors which explicitly account; for the electrostatic contribution to the interaction (CoMFA, CoMSIA, and surface approaches) perform well, but they do not improve the quantitative models. Moreover, useful hints for the identification of the antagonist binding site in the three-dimensional modeling of the receptor (direct approach) were provided by the receptor hypothesis derived by the pharmacophoric approach. The ligand-receptor complexes obtained provided a detailed description of the modalities of the interaction and interesting suggestions for further experiments.

Mapping and fitting the peripheral benzodiazepine receptor binding site by carboxamide derivatives. Comparison of different approaches to quantitative ligand-receptor interaction modeling / M., Anzini; A., Cappelli; S., Vomero; M., Seeber; Menziani, Maria Cristina; T., Langer; B., Hagen; C., Manzoni; Jj, Bourguignon. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - STAMPA. - 44:8(2001), pp. 1134-1150. [10.1021/jm0009742]

Mapping and fitting the peripheral benzodiazepine receptor binding site by carboxamide derivatives. Comparison of different approaches to quantitative ligand-receptor interaction modeling

M. Seeber;MENZIANI, Maria Cristina;
2001

Abstract

The synthetic-computational approach to the study of the binding site of peripheral benzodiazepine receptor (PBR) ligands related to 1-(2-chlorophenyl) -N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195, 1) within their receptor (Cappelli et al. J. Med. Chem. 1997, 40, 2910-2921) has been extended. A series of carboxamide derivatives endowed with differently substituted planar aromatic or heteroaromatic systems was designed with the aim of getting further information on the topological requisites of the carbonyl and aromatic moieties for interaction with the PER binding site. The synthesis of most of these compounds involves Weinreb amidation of the appropriate lactone as the key step. The most potent compound, among the newly synthesized ones, shows a nanomolar PER affinity similar to that shown by I and the presence of a basic N-ethyl-N-benzylaminomethyl group in S-position of the quinoline nucleus. Thus, it may be considered the first example of a new class of water soluble derivatives of 1. Several computational methods were used to furnish descriptors of the isolated ligands (indirect approaches) able to rationalize the variation in the binding affinity of the enlarged series of compounds. Sound QSAR models are obtained by size and shape descriptors (volume approach) which codify for the short-range contributions to Ligand-receptor interactions. Molecular descriptors which explicitly account; for the electrostatic contribution to the interaction (CoMFA, CoMSIA, and surface approaches) perform well, but they do not improve the quantitative models. Moreover, useful hints for the identification of the antagonist binding site in the three-dimensional modeling of the receptor (direct approach) were provided by the receptor hypothesis derived by the pharmacophoric approach. The ligand-receptor complexes obtained provided a detailed description of the modalities of the interaction and interesting suggestions for further experiments.
2001
44
8
1134
1150
Mapping and fitting the peripheral benzodiazepine receptor binding site by carboxamide derivatives. Comparison of different approaches to quantitative ligand-receptor interaction modeling / M., Anzini; A., Cappelli; S., Vomero; M., Seeber; Menziani, Maria Cristina; T., Langer; B., Hagen; C., Manzoni; Jj, Bourguignon. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - STAMPA. - 44:8(2001), pp. 1134-1150. [10.1021/jm0009742]
M., Anzini; A., Cappelli; S., Vomero; M., Seeber; Menziani, Maria Cristina; T., Langer; B., Hagen; C., Manzoni; Jj, Bourguignon
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/307084
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 68
social impact