Starting from a family of equations of motion for the dynamics of extended systems whose trajectories sample constant pressure and temperature ensemble distributions (Ferrario, M., 1993, in Computer Simulation in Chemical Physics, edited by M. P. Alien and D. J. Tildesley (Dordrecht: Kluwer)), explicit time reversible integration schemes are derived through a straightforward Trotter factorization of the dynamic Liouville propagator, along the lines first described by Tuckerman, M., Martyna, G. J., and Berne, B. J., 1992, J. chem. Phys., 97, 1990. The original Andersen's constant-pressure dynamics are recovered in the limit of zero coupling with the Nose thermostat. Reversible integration schemes are derived as a generalization of the velocity Verlet algorithm, with direct handling of the velocity dependent forces in such a way that both predictions and relative iterative corrections are not required. For the sake of clarity both the, equations of motion and the Trotter factorization are kept to the basic level. The proposed structure can accommodate easily, when needed, complications such as multiple timesteps and more effective thermostats (Nose-Hoover-chain). Finally, an application is made to a model molecular system subjected to holonomic constraints by means of the SHAKE algorithm. In the constant pressure case it is no longer possible to avoid using a prediction for the constraint contribution to the volume acceleration; however, recourse to a minimal iteration scheme still achieves excellent overall behaviour for the proposed integration algorithm, with no perceptible difference from the unconstrained case.

Reversible integrators for basic extended system molecular dynamics / A., Sergi; Ferrario, Mauro; D., Costa. - In: MOLECULAR PHYSICS. - ISSN 0026-8976. - STAMPA. - 97:(1999), pp. 825-832. [10.1080/00268979909482883]

Reversible integrators for basic extended system molecular dynamics

FERRARIO, Mauro;
1999

Abstract

Starting from a family of equations of motion for the dynamics of extended systems whose trajectories sample constant pressure and temperature ensemble distributions (Ferrario, M., 1993, in Computer Simulation in Chemical Physics, edited by M. P. Alien and D. J. Tildesley (Dordrecht: Kluwer)), explicit time reversible integration schemes are derived through a straightforward Trotter factorization of the dynamic Liouville propagator, along the lines first described by Tuckerman, M., Martyna, G. J., and Berne, B. J., 1992, J. chem. Phys., 97, 1990. The original Andersen's constant-pressure dynamics are recovered in the limit of zero coupling with the Nose thermostat. Reversible integration schemes are derived as a generalization of the velocity Verlet algorithm, with direct handling of the velocity dependent forces in such a way that both predictions and relative iterative corrections are not required. For the sake of clarity both the, equations of motion and the Trotter factorization are kept to the basic level. The proposed structure can accommodate easily, when needed, complications such as multiple timesteps and more effective thermostats (Nose-Hoover-chain). Finally, an application is made to a model molecular system subjected to holonomic constraints by means of the SHAKE algorithm. In the constant pressure case it is no longer possible to avoid using a prediction for the constraint contribution to the volume acceleration; however, recourse to a minimal iteration scheme still achieves excellent overall behaviour for the proposed integration algorithm, with no perceptible difference from the unconstrained case.
97
825
832
Reversible integrators for basic extended system molecular dynamics / A., Sergi; Ferrario, Mauro; D., Costa. - In: MOLECULAR PHYSICS. - ISSN 0026-8976. - STAMPA. - 97:(1999), pp. 825-832. [10.1080/00268979909482883]
A., Sergi; Ferrario, Mauro; D., Costa
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/306704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact