In the present paper the classification of PL 4-manifolds by means of the combinatorial invariant “regular genus” is proved to be not finite to one: indeed, the set of all $D^2$-bundles over $S^2$ (i.e. every bundle $\csi_c$ with Euler class $c$ and boundary L(c,1), $c \in Z-\{0,-1,-1}$, together with the trivial bundle $S^2 X D^2$) constitutes an infinite family of PL 4-manifolds with the same regular genus (equal to three). Further, general results are obtained, concerning PL 4-manifolds with “restricted gap” between their regular genus and the rank of their fundamental group, especially in case of free fundamental group.

An infinite class of bounded 4-manifolds having regular genus three / Casali, Maria Rita. - In: BOLLETTINO DELL'UNIONE MATEMATICA ITALIANA. A. - ISSN 0392-4033. - STAMPA. - 10:(1996), pp. 279-303.

An infinite class of bounded 4-manifolds having regular genus three

CASALI, Maria Rita
1996

Abstract

In the present paper the classification of PL 4-manifolds by means of the combinatorial invariant “regular genus” is proved to be not finite to one: indeed, the set of all $D^2$-bundles over $S^2$ (i.e. every bundle $\csi_c$ with Euler class $c$ and boundary L(c,1), $c \in Z-\{0,-1,-1}$, together with the trivial bundle $S^2 X D^2$) constitutes an infinite family of PL 4-manifolds with the same regular genus (equal to three). Further, general results are obtained, concerning PL 4-manifolds with “restricted gap” between their regular genus and the rank of their fundamental group, especially in case of free fundamental group.
10
279
303
An infinite class of bounded 4-manifolds having regular genus three / Casali, Maria Rita. - In: BOLLETTINO DELL'UNIONE MATEMATICA ITALIANA. A. - ISSN 0392-4033. - STAMPA. - 10:(1996), pp. 279-303.
Casali, Maria Rita
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/306621
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact