For which groups G of even order 2n does a 1-factorization of the complete graph on 2n veritces exist with the property of admitting G as a sharply vertex-transitive automorphism group? The complete answer is still unknown. Using the definition of a starter in G introduced in [M. Buratti "Abelian 1-factorizations of the complete graph" Europ. J Comb. 2001, pp.291-295], we give a positive answer for new classes of groups; for example, the nilpotent groups with either an abelian Sylow 2-subgroup or a non-abelian Sylow 2-subgroup which possesses a cyclic subgroup of index 2. Further considerations are given in case the automorphism group G fixes a 1-factor.

Nilpotent 1-factorizations of the complete graph / Rinaldi, Gloria. - In: JOURNAL OF COMBINATORIAL DESIGNS. - ISSN 1063-8539. - STAMPA. - 13:6(2005), pp. 393-405. [10.1002/jcd.20069]

Nilpotent 1-factorizations of the complete graph

RINALDI, Gloria
2005

Abstract

For which groups G of even order 2n does a 1-factorization of the complete graph on 2n veritces exist with the property of admitting G as a sharply vertex-transitive automorphism group? The complete answer is still unknown. Using the definition of a starter in G introduced in [M. Buratti "Abelian 1-factorizations of the complete graph" Europ. J Comb. 2001, pp.291-295], we give a positive answer for new classes of groups; for example, the nilpotent groups with either an abelian Sylow 2-subgroup or a non-abelian Sylow 2-subgroup which possesses a cyclic subgroup of index 2. Further considerations are given in case the automorphism group G fixes a 1-factor.
2005
13
6
393
405
Nilpotent 1-factorizations of the complete graph / Rinaldi, Gloria. - In: JOURNAL OF COMBINATORIAL DESIGNS. - ISSN 1063-8539. - STAMPA. - 13:6(2005), pp. 393-405. [10.1002/jcd.20069]
Rinaldi, Gloria
File in questo prodotto:
File Dimensione Formato  
nilJCDrev.pdf

Accesso riservato

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 188.74 kB
Formato Adobe PDF
188.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Nilpotent_JCD.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 144.25 kB
Formato Adobe PDF
144.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/306437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact