We consider time-dependent Schrodinger equations in one dimension with double-well potential and an external nonlinear perturbation. If the initial state belongs to the eigenspace spanned by the eigenvectors associated to the two lowest eigenvalues, then, in the semiclassical limit, we show that the reduction of the time-dependent equation to a 2-mode equation gives the dominant term of the solution with a precise estimate of the error. By means of this stability result we are able to prove the absence of the beating motion for large enough nonlinearity.

Nonlinear time-dependent one-dimensional Schrodinger equation with double-well potential / Sacchetti, Andrea. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 35:5(2004), pp. 1160-1176. [10.1137/S0036141002415438]

Nonlinear time-dependent one-dimensional Schrodinger equation with double-well potential

SACCHETTI, Andrea
2004

Abstract

We consider time-dependent Schrodinger equations in one dimension with double-well potential and an external nonlinear perturbation. If the initial state belongs to the eigenspace spanned by the eigenvectors associated to the two lowest eigenvalues, then, in the semiclassical limit, we show that the reduction of the time-dependent equation to a 2-mode equation gives the dominant term of the solution with a precise estimate of the error. By means of this stability result we are able to prove the absence of the beating motion for large enough nonlinearity.
2004
35
5
1160
1176
Nonlinear time-dependent one-dimensional Schrodinger equation with double-well potential / Sacchetti, Andrea. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 35:5(2004), pp. 1160-1176. [10.1137/S0036141002415438]
Sacchetti, Andrea
File in questo prodotto:
File Dimensione Formato  
SIAM_Sacchetti_2004_VQR.pdf

Accesso riservato

Tipologia: Altro
Dimensione 584.64 kB
Formato Adobe PDF
584.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/306410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 22
social impact