The linear and nonlinear optical properties of realistic quantum wires are studied through a theoretical approach based on a set of generalized semiconductor Bloch equations. Our scheme allows a full three-dimensional multisubband description of electron-hole correlation for any confinement profile, thus permitting a direct comparison with experiments for available quantum-wire structures. Our results show that electron-hole Coulomb correlation removes the one-dimensional band-edge singularities from the absorption spectra, whose shape is heavily modified with respect to the ideal free-carrier single-subband case over the whole density range.
Coulomb-induced suppression of band-edge singularities in the optical spectra of realistic quantum-wire structures / F., Rossi; Molinari, Elisa. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 76:(1996), pp. 3642-3645.
Coulomb-induced suppression of band-edge singularities in the optical spectra of realistic quantum-wire structures
MOLINARI, Elisa
1996-01-01
Abstract
The linear and nonlinear optical properties of realistic quantum wires are studied through a theoretical approach based on a set of generalized semiconductor Bloch equations. Our scheme allows a full three-dimensional multisubband description of electron-hole correlation for any confinement profile, thus permitting a direct comparison with experiments for available quantum-wire structures. Our results show that electron-hole Coulomb correlation removes the one-dimensional band-edge singularities from the absorption spectra, whose shape is heavily modified with respect to the ideal free-carrier single-subband case over the whole density range.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris