Computer vision and ubiquitous multimedia access nowadays make feasible the development of a mostly automated system for human-behavior analysis. In this context, our proposal is to analyze human behaviors by classifying the posture of the monitored person and, consequently, detecting corresponding events and alarm situations, like a fall. To this aim, our approach can be divided in two phases: for each frame, the projection histograms (Haritaoglu et al., 1998) of each person are computed and compared with the probabilistic projection maps stored for each posture during the training phase; then, the obtained posture is further validated exploiting the information extracted by a tracking module in order to take into account the reliability of the classification of the first phase. Moreover, the tracking algorithm is used to handle occlusions, making the system particularly robust even in indoors environments. Extensive experimental results demonstrate a promising average accuracy of more than 95% in correctly classifying human postures, even in the case of challenging conditions.
Probabilistic posture classification for human-behavior analysis / Cucchiara, Rita; Grana, Costantino; Prati, Andrea; Vezzani, Roberto. - In: IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS. - ISSN 1083-4427. - STAMPA. - 35:1(2005), pp. 42-54. [10.1109/TSMCA.2004.838501]
Probabilistic posture classification for human-behavior analysis
CUCCHIARA, Rita;GRANA, Costantino;VEZZANI, Roberto
2005
Abstract
Computer vision and ubiquitous multimedia access nowadays make feasible the development of a mostly automated system for human-behavior analysis. In this context, our proposal is to analyze human behaviors by classifying the posture of the monitored person and, consequently, detecting corresponding events and alarm situations, like a fall. To this aim, our approach can be divided in two phases: for each frame, the projection histograms (Haritaoglu et al., 1998) of each person are computed and compared with the probabilistic projection maps stored for each posture during the training phase; then, the obtained posture is further validated exploiting the information extracted by a tracking module in order to take into account the reliability of the classification of the first phase. Moreover, the tracking algorithm is used to handle occlusions, making the system particularly robust even in indoors environments. Extensive experimental results demonstrate a promising average accuracy of more than 95% in correctly classifying human postures, even in the case of challenging conditions.File | Dimensione | Formato | |
---|---|---|---|
TSMCA05.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris