We define a family of groups with balanced presentations and prove that these groups correspond to spines (or, equivalently, to Heegaard diagrams) of a certain class of Seifert fibered 3-manifolds. These manifolds are constructed from triangulated 3-balls by identifying pairs of boundary faces via orientation-reversing homeomorphisms. Then we describe the manifolds as cyclic branched coverings of certain lens spaces when the groups are cyclically presented. Finally, we give explicit computations of the Casson-Walker-Lescop invariant and the Rohlin invariant for many manifolds in the above class.

A geometric study of generalized Neuwirth groups / Spaggiari, Fulvia. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - STAMPA. - 18:5(2006), pp. 803-827. [10.1515/FORUM.2006.040]

A geometric study of generalized Neuwirth groups

SPAGGIARI, Fulvia
2006

Abstract

We define a family of groups with balanced presentations and prove that these groups correspond to spines (or, equivalently, to Heegaard diagrams) of a certain class of Seifert fibered 3-manifolds. These manifolds are constructed from triangulated 3-balls by identifying pairs of boundary faces via orientation-reversing homeomorphisms. Then we describe the manifolds as cyclic branched coverings of certain lens spaces when the groups are cyclically presented. Finally, we give explicit computations of the Casson-Walker-Lescop invariant and the Rohlin invariant for many manifolds in the above class.
2006
18
5
803
827
A geometric study of generalized Neuwirth groups / Spaggiari, Fulvia. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - STAMPA. - 18:5(2006), pp. 803-827. [10.1515/FORUM.2006.040]
Spaggiari, Fulvia
File in questo prodotto:
File Dimensione Formato  
forum.2006.040.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 416.73 kB
Formato Adobe PDF
416.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/305634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact