Oral administration of peptide and protein drugs requires their protection from the acidic and enzymatic degradation in the gastro-intestinal environment and their targeting to the absorption zone. For this purpose, an alginate microsystem, as a carrier of bovine serum albumin (BSA), as a model protein, was developed using a spray-drying technique. A hardening process with Ca2+ and chitosan (CS) provided a system with resistance to the gastro-intestinal barriers and of appropriate size for targeting to the Peyer's patches. The present work aims to evaluate the effects of the ratio of sodium alginate (Na-A) and BSA as well as the pH of the crosslinking medium on the microsystem properties. Microparticle morphological and dimensional characteristics did not change significantly with the formulation variables. BSA loading at a pH value less than the protein isoelectric point (pI) was higher than that at a pH similar to the pI owing to an electrostatic interaction between the charged protein and the polyanionic alginate. The maximum encapsulation efficiency was obtained at the highest Na-A/BSA ratio. Protein release in a simulated gastro-intestinal fluid was not affected by the preparative variables, but was controlled by the pH-dependent nature of the polymer material. Polyacrylamide gel electrophoresis (PAGE) demonstrated the stability of the protein to both the preparative conditions and the gastro-intestinal pH values.
Protein immobilization in crosslinked alginate microparticles / Coppi, Gilberto; Iannuccelli, Valentina; Leo, Eliana Grazia; Bernabei, Maria Teresa; Cameroni, Riccardo. - In: JOURNAL OF MICROENCAPSULATION. - ISSN 0265-2048. - STAMPA. - 19:1(2002), pp. 37-44. [10.1080/02652040110055621]
Protein immobilization in crosslinked alginate microparticles
COPPI, Gilberto;IANNUCCELLI, Valentina;LEO, Eliana Grazia;BERNABEI, Maria Teresa;CAMERONI, Riccardo
2002
Abstract
Oral administration of peptide and protein drugs requires their protection from the acidic and enzymatic degradation in the gastro-intestinal environment and their targeting to the absorption zone. For this purpose, an alginate microsystem, as a carrier of bovine serum albumin (BSA), as a model protein, was developed using a spray-drying technique. A hardening process with Ca2+ and chitosan (CS) provided a system with resistance to the gastro-intestinal barriers and of appropriate size for targeting to the Peyer's patches. The present work aims to evaluate the effects of the ratio of sodium alginate (Na-A) and BSA as well as the pH of the crosslinking medium on the microsystem properties. Microparticle morphological and dimensional characteristics did not change significantly with the formulation variables. BSA loading at a pH value less than the protein isoelectric point (pI) was higher than that at a pH similar to the pI owing to an electrostatic interaction between the charged protein and the polyanionic alginate. The maximum encapsulation efficiency was obtained at the highest Na-A/BSA ratio. Protein release in a simulated gastro-intestinal fluid was not affected by the preparative variables, but was controlled by the pH-dependent nature of the polymer material. Polyacrylamide gel electrophoresis (PAGE) demonstrated the stability of the protein to both the preparative conditions and the gastro-intestinal pH values.File | Dimensione | Formato | |
---|---|---|---|
coppi2002.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
727.91 kB
Formato
Adobe PDF
|
727.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris