During the past two decades several revisions of the concepts underlying interneuronal communication in the central nervous system have been advanced. We propose here to classify communicational phenomena between cells of the central neural tissue under two general frames: ''wiring'' and ''volume'' transmission. ''Wiring'' transmission is defined as intercellular communication occurring through a well-defined connecting structure. Thus, wiring transmission Is characterized by the presence of physically identifiable communication channels within the neuronal and/or glial cell network. It includes synaptic transmission but also other types of intercellular communication through a connecting structure (e.g., gap junctions). ''Volume'' transmission is characterized by signal diffusion in a three-dimensional fashion within the brain extracellular fluid. Thus, multiple, structurally often not well characterized extracellular pathways connect intercommunicating cells. Volume transmission includes short- (but larger than synaptic cleft, i.e. about 20 nm) and long-distance diffusion of signals through the extracellular and cerebrospinal fluid. It must be underlined that the definitions of wiring and volume transmission focus on the modality of transmission and are neutral with respect to the source and target of the transmission, as well as type of informational substance transmitted. Therefore, any cell present in the neural tissue (neurons, astroglia, microglia, ependyma, tanycytes, etc.) can be a source or a target of wiring and volume transmission. In this paper we discuss the basic definitions and some distinctive characteristics of the two types of transmission. In addition, we review the evidence for different types of intercellular communication besides synaptic transmission in the central nervous system during phylogeny, and in vertebrates in physiological and pathological conditions.

Intercellular communication in the brain: Wiring versus volume transmission / Agnati, Luigi Francesco; Zoli, Michele; I., Stromberg; K., Fuxe. - In: NEUROSCIENCE. - ISSN 0306-4522. - STAMPA. - 69:(1995), pp. 711-726.

Intercellular communication in the brain: Wiring versus volume transmission

AGNATI, Luigi Francesco;ZOLI, Michele;
1995-01-01

Abstract

During the past two decades several revisions of the concepts underlying interneuronal communication in the central nervous system have been advanced. We propose here to classify communicational phenomena between cells of the central neural tissue under two general frames: ''wiring'' and ''volume'' transmission. ''Wiring'' transmission is defined as intercellular communication occurring through a well-defined connecting structure. Thus, wiring transmission Is characterized by the presence of physically identifiable communication channels within the neuronal and/or glial cell network. It includes synaptic transmission but also other types of intercellular communication through a connecting structure (e.g., gap junctions). ''Volume'' transmission is characterized by signal diffusion in a three-dimensional fashion within the brain extracellular fluid. Thus, multiple, structurally often not well characterized extracellular pathways connect intercommunicating cells. Volume transmission includes short- (but larger than synaptic cleft, i.e. about 20 nm) and long-distance diffusion of signals through the extracellular and cerebrospinal fluid. It must be underlined that the definitions of wiring and volume transmission focus on the modality of transmission and are neutral with respect to the source and target of the transmission, as well as type of informational substance transmitted. Therefore, any cell present in the neural tissue (neurons, astroglia, microglia, ependyma, tanycytes, etc.) can be a source or a target of wiring and volume transmission. In this paper we discuss the basic definitions and some distinctive characteristics of the two types of transmission. In addition, we review the evidence for different types of intercellular communication besides synaptic transmission in the central nervous system during phylogeny, and in vertebrates in physiological and pathological conditions.
69
711
726
Intercellular communication in the brain: Wiring versus volume transmission / Agnati, Luigi Francesco; Zoli, Michele; I., Stromberg; K., Fuxe. - In: NEUROSCIENCE. - ISSN 0306-4522. - STAMPA. - 69:(1995), pp. 711-726.
Agnati, Luigi Francesco; Zoli, Michele; I., Stromberg; K., Fuxe
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/305353
Citazioni
  • ???jsp.display-item.citation.pmc??? 106
  • Scopus 469
  • ???jsp.display-item.citation.isi??? 430
social impact