A circuit model of ferrite core inductors is presented. The behavior of the model parameters versus frequency is considered. The total power loss in inductors consisting of the winding resistance loss and the core loss, is modeled by a frequency-dependent equivalent series resistance. The total inductance given by the sum of the main inductance and the leakage inductance is obtained as a function of frequency. In order to study the core equivalent resistance and main inductance versus frequency, the magnetic field distribution in the core is derived from Maxwell's equations for a long solenoid. The complex permeability and permittivity of the ferrite core are introduced in the electromagnetic field equations, Experimental results are also given.
High-frequency small-signal model of ferrite core inductors / M. K., Kazimierczuk; G., Sancineto; G., Grandi; U., Reggiani; Massarini, Antonio. - In: IEEE TRANSACTIONS ON MAGNETICS. - ISSN 0018-9464. - ELETTRONICO. - 35:(1999), pp. 4185-4191.
High-frequency small-signal model of ferrite core inductors
MASSARINI, Antonio
1999
Abstract
A circuit model of ferrite core inductors is presented. The behavior of the model parameters versus frequency is considered. The total power loss in inductors consisting of the winding resistance loss and the core loss, is modeled by a frequency-dependent equivalent series resistance. The total inductance given by the sum of the main inductance and the leakage inductance is obtained as a function of frequency. In order to study the core equivalent resistance and main inductance versus frequency, the magnetic field distribution in the core is derived from Maxwell's equations for a long solenoid. The complex permeability and permittivity of the ferrite core are introduced in the electromagnetic field equations, Experimental results are also given.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris