The use of therapeutic electromagnetic fields (EMF) for bone healing has positive clinical effects but may have adverse biologic effects. For this reason, EMF exposure has been repeatedly investigated to exclude the possibility of genotoxic effects and tumour risk. This paper describes the effects of EMFs on cell cultures. We analyzed the effects of EMF (28 gauss, 75 Hz) on growth and metabolic activities in four different cell types: L929 fibroblasts, osteoblast-like HOS/TE85 cells, human lymphocytes, and rabbit chondrocytes. We found no cytotoxic or mutagenic effects on cultures exposed to EMF compared with unexposed controls. Results of cell proliferation showed a statistically significant increase for all cultures exposed to EMF with respect to controls (L929 +45%,p = 0.002; HOS/TE85 +32%, p = 0.001; chondrocytes +40%, p = 0.0003; lymphocytes +39%, p = 0.0002). Biochemical and enzymatic tests gave different results, depending on cell types: all tested values were increased after EMF exposure, even if only some of them reached statistical significance (total proteins: HOS/TE85 p = 0.004, chondrocytes p = 0.003; alkaline phosphatase: L929p = 0.0003, HOS/TE85 p < 0.0001, chondrocytes p = 0.009, lymphocytes p = 0.006; lactate dehydrogenase: chondrocytes p = 0.0002, lymphocytes p = 0.0005). Biochemical and enzymatic tests and cell proliferation results suggest a more active metabolism in cartilage and bone cells after EMF exposure. These effects could be relevant for bone healing in clinical practice.

In vitro evaluation of the effects of electromagnetic fields used for bone healing / P., Torricelli; M., Fini; G., Giavaresi; Canè, Valerio; R., Giardino. - In: ELECTRO- AND MAGNETOBIOLOGY. - ISSN 1061-9526. - 17:(1998), pp. 335-342.

In vitro evaluation of the effects of electromagnetic fields used for bone healing

CANÈ, Valerio;
1998

Abstract

The use of therapeutic electromagnetic fields (EMF) for bone healing has positive clinical effects but may have adverse biologic effects. For this reason, EMF exposure has been repeatedly investigated to exclude the possibility of genotoxic effects and tumour risk. This paper describes the effects of EMFs on cell cultures. We analyzed the effects of EMF (28 gauss, 75 Hz) on growth and metabolic activities in four different cell types: L929 fibroblasts, osteoblast-like HOS/TE85 cells, human lymphocytes, and rabbit chondrocytes. We found no cytotoxic or mutagenic effects on cultures exposed to EMF compared with unexposed controls. Results of cell proliferation showed a statistically significant increase for all cultures exposed to EMF with respect to controls (L929 +45%,p = 0.002; HOS/TE85 +32%, p = 0.001; chondrocytes +40%, p = 0.0003; lymphocytes +39%, p = 0.0002). Biochemical and enzymatic tests gave different results, depending on cell types: all tested values were increased after EMF exposure, even if only some of them reached statistical significance (total proteins: HOS/TE85 p = 0.004, chondrocytes p = 0.003; alkaline phosphatase: L929p = 0.0003, HOS/TE85 p < 0.0001, chondrocytes p = 0.009, lymphocytes p = 0.006; lactate dehydrogenase: chondrocytes p = 0.0002, lymphocytes p = 0.0005). Biochemical and enzymatic tests and cell proliferation results suggest a more active metabolism in cartilage and bone cells after EMF exposure. These effects could be relevant for bone healing in clinical practice.
1998
17
335
342
In vitro evaluation of the effects of electromagnetic fields used for bone healing / P., Torricelli; M., Fini; G., Giavaresi; Canè, Valerio; R., Giardino. - In: ELECTRO- AND MAGNETOBIOLOGY. - ISSN 1061-9526. - 17:(1998), pp. 335-342.
P., Torricelli; M., Fini; G., Giavaresi; Canè, Valerio; R., Giardino
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/305030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact