Polyamines and ornithine decarboxylase, the polyamine biosynthetic enzyme, have been demonstrated to increase in the early phase of several types of brain lesion. However, their role in the pathogenesis of tissue damage is still debated. In the present paper the effects of treatments with alpha-difluoromethylomithine, a suicide inhibitor of omithine decarboxylase, have been investigated in a model of transient forebrain ischemia. Three treatment schedules were used: alpha-difluoromethylomithine treatment was either started 3 hr before and repeated 1 hr after the insult, or started at the time of the insult and continued for 3 or 7 days after post-ischemic reperfusion. The rats were sacrificed 4 hT, 7 or 40 days after reperfusion, respectively. The acute experiment demonstrated that alpha-difluoromethylomithine can reduce the increase of glial fibrillary acidic protein immunoreactivity, an early marker of astroglial reaction, in ischemic striatum. Subchronic and chronic alpha-difluoromethylomithine treatments induced a worsening of the morphological outcome of the ischemic lesion. In caudate-putamen a trend for an increase of the area of neuronal loss was present after both treatments. In the hippocampal formation, a significant increase in the severity of neuronal lesion was observed in the mildly lesioned CA3 field. In addition, other alterations of lesioned tissue were observed in alpha-difluoromethylomithine-treated animals, including increases of non-neuronal cells at 7 and especially 40 days post-lesion in striatum and CA3 hippocampal field. In conclusion, present data indicate that omithine decarboxylase activation after ischemic lesion is a crucial factor for survival of mildly lesioned neurons and proper tissue reaction to the ischemic lesion. The experiment on acute alpha-difluoromethylomithine treatment suggests that these effects may be, at least in part, related to putrescine-induced activation of astroglial cells in the early post-lesion period.

Effects of polyamine synthesis blockade on neuronal loss and astroglial reaction after transient forebrain ischemia / Zoli, Michele; Zini, Isabella; R., Grimaldi; Biagini, Giuseppe; Agnati, Luigi Francesco. - In: INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE. - ISSN 0736-5748. - STAMPA. - 11:(1993), pp. 175-187.

Effects of polyamine synthesis blockade on neuronal loss and astroglial reaction after transient forebrain ischemia

ZOLI, Michele;ZINI, Isabella;BIAGINI, Giuseppe;AGNATI, Luigi Francesco
1993

Abstract

Polyamines and ornithine decarboxylase, the polyamine biosynthetic enzyme, have been demonstrated to increase in the early phase of several types of brain lesion. However, their role in the pathogenesis of tissue damage is still debated. In the present paper the effects of treatments with alpha-difluoromethylomithine, a suicide inhibitor of omithine decarboxylase, have been investigated in a model of transient forebrain ischemia. Three treatment schedules were used: alpha-difluoromethylomithine treatment was either started 3 hr before and repeated 1 hr after the insult, or started at the time of the insult and continued for 3 or 7 days after post-ischemic reperfusion. The rats were sacrificed 4 hT, 7 or 40 days after reperfusion, respectively. The acute experiment demonstrated that alpha-difluoromethylomithine can reduce the increase of glial fibrillary acidic protein immunoreactivity, an early marker of astroglial reaction, in ischemic striatum. Subchronic and chronic alpha-difluoromethylomithine treatments induced a worsening of the morphological outcome of the ischemic lesion. In caudate-putamen a trend for an increase of the area of neuronal loss was present after both treatments. In the hippocampal formation, a significant increase in the severity of neuronal lesion was observed in the mildly lesioned CA3 field. In addition, other alterations of lesioned tissue were observed in alpha-difluoromethylomithine-treated animals, including increases of non-neuronal cells at 7 and especially 40 days post-lesion in striatum and CA3 hippocampal field. In conclusion, present data indicate that omithine decarboxylase activation after ischemic lesion is a crucial factor for survival of mildly lesioned neurons and proper tissue reaction to the ischemic lesion. The experiment on acute alpha-difluoromethylomithine treatment suggests that these effects may be, at least in part, related to putrescine-induced activation of astroglial cells in the early post-lesion period.
1993
11
175
187
Effects of polyamine synthesis blockade on neuronal loss and astroglial reaction after transient forebrain ischemia / Zoli, Michele; Zini, Isabella; R., Grimaldi; Biagini, Giuseppe; Agnati, Luigi Francesco. - In: INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE. - ISSN 0736-5748. - STAMPA. - 11:(1993), pp. 175-187.
Zoli, Michele; Zini, Isabella; R., Grimaldi; Biagini, Giuseppe; Agnati, Luigi Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/304976
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 17
social impact