A notion of convergence in distribution for non (necessarily) measurable random elements, due to Hoffmann-Jorgensen, is characterized in terms of weak convergence of finitely additive probability measures. A similar characterization is given for a strengthened version of such a notion. Further, it is shown that the empirical process for an exchangeable sequence can fail to converge, due to the nonexistence of any measurable limit, although it converges for an i.i.d. sequence. Because of phenomena of this type, Hoffmann-Jorgensen's definition is extended to the case of a nonmeasurable limit. In the extended definition, naturally suggested by the main results, the limit is a finitely additive probability measure.

Convergence in distribution of nonmeasurable random elements / Berti, Patrizia; P., Rigo. - In: ANNALS OF PROBABILITY. - ISSN 0091-1798. - STAMPA. - 32:(2004), pp. 365-379.

Convergence in distribution of nonmeasurable random elements

BERTI, Patrizia;
2004

Abstract

A notion of convergence in distribution for non (necessarily) measurable random elements, due to Hoffmann-Jorgensen, is characterized in terms of weak convergence of finitely additive probability measures. A similar characterization is given for a strengthened version of such a notion. Further, it is shown that the empirical process for an exchangeable sequence can fail to converge, due to the nonexistence of any measurable limit, although it converges for an i.i.d. sequence. Because of phenomena of this type, Hoffmann-Jorgensen's definition is extended to the case of a nonmeasurable limit. In the extended definition, naturally suggested by the main results, the limit is a finitely additive probability measure.
32
365
379
Convergence in distribution of nonmeasurable random elements / Berti, Patrizia; P., Rigo. - In: ANNALS OF PROBABILITY. - ISSN 0091-1798. - STAMPA. - 32:(2004), pp. 365-379.
Berti, Patrizia; P., Rigo
File in questo prodotto:
File Dimensione Formato  
1078415839.pdf

non disponibili

Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 159.11 kB
Formato Adobe PDF
159.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/304547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 8
social impact