Moving shadows need careful consideration in the development of robust dynamic scene analysis systems. Moving shadow detection is critical for accurate object detection in video streams since shadow points are often misclassified as object points, causing errors in segmentation and tracking. Many algorithms have been proposed in the literature that deal with shadows. However, a comparative evaluation of the existing approaches is still lacking. In this paper, we present a comprehensive survey of moving shadow detection approaches. We organize contributions reported in the literature in four classes two of them are statistical and two are deterministic. We also present a comparative empirical evaluation of representative algorithms selected from these four classes. Novel quantitative (detection and discrimination rate) and qualitative metrics (scene and object independence, flexibility to shadow situations, and robustness to noise) are proposed to evaluate these classes of algorithms on a benchmark suite of indoor and outdoor video sequences. These video sequences and associated ground-truth data are made available at http://cvrr.ucsd.edu/aton/shadow to allow for others in the community to experiment with new algorithms and metrics.

Detecting moving shadows: Algorithms and evaluation / Prati, Andrea; I., Mikic; Mm, Trivedi; Cucchiara, Rita. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. - ISSN 0162-8828. - STAMPA. - 25:7(2003), pp. 918-923. [10.1109/TPAMI.2003.1206520]

Detecting moving shadows: Algorithms and evaluation

PRATI, Andrea;CUCCHIARA, Rita
2003

Abstract

Moving shadows need careful consideration in the development of robust dynamic scene analysis systems. Moving shadow detection is critical for accurate object detection in video streams since shadow points are often misclassified as object points, causing errors in segmentation and tracking. Many algorithms have been proposed in the literature that deal with shadows. However, a comparative evaluation of the existing approaches is still lacking. In this paper, we present a comprehensive survey of moving shadow detection approaches. We organize contributions reported in the literature in four classes two of them are statistical and two are deterministic. We also present a comparative empirical evaluation of representative algorithms selected from these four classes. Novel quantitative (detection and discrimination rate) and qualitative metrics (scene and object independence, flexibility to shadow situations, and robustness to noise) are proposed to evaluate these classes of algorithms on a benchmark suite of indoor and outdoor video sequences. These video sequences and associated ground-truth data are made available at http://cvrr.ucsd.edu/aton/shadow to allow for others in the community to experiment with new algorithms and metrics.
2003
25
7
918
923
Detecting moving shadows: Algorithms and evaluation / Prati, Andrea; I., Mikic; Mm, Trivedi; Cucchiara, Rita. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. - ISSN 0162-8828. - STAMPA. - 25:7(2003), pp. 918-923. [10.1109/TPAMI.2003.1206520]
Prati, Andrea; I., Mikic; Mm, Trivedi; Cucchiara, Rita
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/304534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 721
  • ???jsp.display-item.citation.isi??? 517
social impact