Cytochrome P450 (CYP) is a family of enzymes responsible for organism detoxification. However, some of the members of the CYP1A subfamily also catalyse the activation of heterocyclic amines (HAs), present in cooked meat, to carcinogenic compounds which have been shown to increase the risk of breast, colorectal and lung cancer. In humans, CYP1A2 is the enzyme with the most significant action in HA metabolism but in rodents CYP1A1 is also important in this biotransformation. Understanding the metabolic action of these enzymes is essential to predict the factors that enable the formation of the carcinogenic products. We have built two models of CYP1A2, one for the human enzyme and one for the rat homologue. The templates chosen include the only X-ray structure published to date for a mammal CYP, a quimeric C2A5 from rabbit, as well as CYPs belonging to Bacillus megaterium (CYPBm-3), Pseudomonas putida (CYPcam), Pseudomonas sp. (CYPterp), and Saccharopolyspora erythraea (CYPeryf). Two HAs, MeIQ (2-amino-3,4-dimethylimidazo[4,5-f] quinoline) and MeIQx (2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline), known substrates of human and rat CYPIA2, were docked in the active site of the models, providing information regarding the different catalytic rates associated with the metabolisms in both enzymes. This is important for analysing the behaviour of animal models concerning the testing of anticancer drugs.

Modelling the metabolic action of human and rat CYP1A2 and its relationship with the carcinogenicity of heterocyclic amines / R., DA FONSECA; Menziani, Maria Cristina; A., Melo; Mj, Ramos. - In: MOLECULAR PHYSICS. - ISSN 0026-8976. - STAMPA. - 101:17(2003), pp. 2731-2741. [10.1080/00268970310001603112]

Modelling the metabolic action of human and rat CYP1A2 and its relationship with the carcinogenicity of heterocyclic amines

MENZIANI, Maria Cristina;
2003

Abstract

Cytochrome P450 (CYP) is a family of enzymes responsible for organism detoxification. However, some of the members of the CYP1A subfamily also catalyse the activation of heterocyclic amines (HAs), present in cooked meat, to carcinogenic compounds which have been shown to increase the risk of breast, colorectal and lung cancer. In humans, CYP1A2 is the enzyme with the most significant action in HA metabolism but in rodents CYP1A1 is also important in this biotransformation. Understanding the metabolic action of these enzymes is essential to predict the factors that enable the formation of the carcinogenic products. We have built two models of CYP1A2, one for the human enzyme and one for the rat homologue. The templates chosen include the only X-ray structure published to date for a mammal CYP, a quimeric C2A5 from rabbit, as well as CYPs belonging to Bacillus megaterium (CYPBm-3), Pseudomonas putida (CYPcam), Pseudomonas sp. (CYPterp), and Saccharopolyspora erythraea (CYPeryf). Two HAs, MeIQ (2-amino-3,4-dimethylimidazo[4,5-f] quinoline) and MeIQx (2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline), known substrates of human and rat CYPIA2, were docked in the active site of the models, providing information regarding the different catalytic rates associated with the metabolisms in both enzymes. This is important for analysing the behaviour of animal models concerning the testing of anticancer drugs.
2003
101
17
2731
2741
Modelling the metabolic action of human and rat CYP1A2 and its relationship with the carcinogenicity of heterocyclic amines / R., DA FONSECA; Menziani, Maria Cristina; A., Melo; Mj, Ramos. - In: MOLECULAR PHYSICS. - ISSN 0026-8976. - STAMPA. - 101:17(2003), pp. 2731-2741. [10.1080/00268970310001603112]
R., DA FONSECA; Menziani, Maria Cristina; A., Melo; Mj, Ramos
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/304041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact