The paper deals with the existence of bounded solutions of the nonlinear diferential equation u''=f(t,u,u') satisfying suitable conditions at infinity. New existence results are obtained, which generalize and unify previous quoted investigations. The main technique for proving all the results derives from the comparison-type theory introduced by Kiguradze and Shekhter.

On transitional solutions of second order nonlinear differential equations / Malaguti, Luisa; C., Marcelli; N., Partsvania. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 303:(2005), pp. 258-273.

On transitional solutions of second order nonlinear differential equations

MALAGUTI, Luisa;
2005-01-01

Abstract

The paper deals with the existence of bounded solutions of the nonlinear diferential equation u''=f(t,u,u') satisfying suitable conditions at infinity. New existence results are obtained, which generalize and unify previous quoted investigations. The main technique for proving all the results derives from the comparison-type theory introduced by Kiguradze and Shekhter.
303
258
273
On transitional solutions of second order nonlinear differential equations / Malaguti, Luisa; C., Marcelli; N., Partsvania. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 303:(2005), pp. 258-273.
Malaguti, Luisa; C., Marcelli; N., Partsvania
File in questo prodotto:
File Dimensione Formato  
Malaguti Marcelli Partsvania 2005.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 160.7 kB
Formato Adobe PDF
160.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/304020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact