We investigate the group of orientation-preserving auto-homeomorphisms resp. homotopy self-equivalences of the connected sum X of p copies of S^1 x S^n, for p greater than or equal 1, modulo those pseudo-isotopic resp. homotopic to the identity. This result is related to a paper of Hosokawa and Kawauchi on unknotted surfaces in Euclidean 4-space, published in Osaka J. Math. 16 (1979), extending it (in greater generality) for embeddings of X into Euclidean (n+3)-space. Finally, we classify the homotopy type of the complement of an embedded copy of X into the Euclidean (n+3)-space, giving examples of manifolds homotopy equivalent to a bouquet of spheres which cannot be fibered over a circle.

Topological properties of high-dimensional handles / Cavicchioli, Alberto; F., Hegenbarth; Spaggiari, Fulvia. - In: CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. - ISSN 1245-530X. - STAMPA. - 39-1:(1998), pp. 45-62.

Topological properties of high-dimensional handles

CAVICCHIOLI, Alberto;SPAGGIARI, Fulvia
1998

Abstract

We investigate the group of orientation-preserving auto-homeomorphisms resp. homotopy self-equivalences of the connected sum X of p copies of S^1 x S^n, for p greater than or equal 1, modulo those pseudo-isotopic resp. homotopic to the identity. This result is related to a paper of Hosokawa and Kawauchi on unknotted surfaces in Euclidean 4-space, published in Osaka J. Math. 16 (1979), extending it (in greater generality) for embeddings of X into Euclidean (n+3)-space. Finally, we classify the homotopy type of the complement of an embedded copy of X into the Euclidean (n+3)-space, giving examples of manifolds homotopy equivalent to a bouquet of spheres which cannot be fibered over a circle.
39-1
45
62
Topological properties of high-dimensional handles / Cavicchioli, Alberto; F., Hegenbarth; Spaggiari, Fulvia. - In: CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. - ISSN 1245-530X. - STAMPA. - 39-1:(1998), pp. 45-62.
Cavicchioli, Alberto; F., Hegenbarth; Spaggiari, Fulvia
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/303683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact