This paper describes our approach to real-time detection of camera motion and moving object segmentation in videos acquired from moving cameras. As far as we know, none of the proposals reported in the literature are able to meet real-time requirements. In this work, we present an approach based on a color segmentation followed by a region-merging on motion through Markov Random Fields (MRFs). The technique we propose is inspired to a work of Gelgon and Bouthemy (Pattern Recognition 33 (2000) 725-40), that has been modified to reduce computational cost in order to achieve a fast segmentation (about 10 frame per second). To this aim a modified region matching algorithm (namely Partitioned Region Matching) and an innovative arc-based MRF optimization algorithm with a suitable definition of the motion reliability are proposed. Results on both synthetic and real sequences are reported to confirm validity of our solution.
Real-time motion segmentation from moving cameras / Cucchiara, Rita; Prati, Andrea; Vezzani, Roberto. - In: REAL-TIME IMAGING. - ISSN 1077-2014. - STAMPA. - 10:3(2004), pp. 127-143. [10.1016/j.rti.2004.03.002]
Real-time motion segmentation from moving cameras
CUCCHIARA, Rita;PRATI, Andrea;VEZZANI, Roberto
2004
Abstract
This paper describes our approach to real-time detection of camera motion and moving object segmentation in videos acquired from moving cameras. As far as we know, none of the proposals reported in the literature are able to meet real-time requirements. In this work, we present an approach based on a color segmentation followed by a region-merging on motion through Markov Random Fields (MRFs). The technique we propose is inspired to a work of Gelgon and Bouthemy (Pattern Recognition 33 (2000) 725-40), that has been modified to reduce computational cost in order to achieve a fast segmentation (about 10 frame per second). To this aim a modified region matching algorithm (namely Partitioned Region Matching) and an innovative arc-based MRF optimization algorithm with a suitable definition of the motion reliability are proposed. Results on both synthetic and real sequences are reported to confirm validity of our solution.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris