The effect of Cr2O3 on some anorthite-diopside glass-ceramics has been investigated up to amounts of 5 mol%. The solubility in the glassy compositions analysed is total for the oxide, but for amounts higher than 0.5 mol%, an insoluble spinel form, MgCr2O4, precipitates. Ultraviolet-visible spectroscopy has proved to be the most sensitive technique to the presence of Cr(III) in a crystalline spinel site, followed by X-ray diffraction and scanning electron microscopy observations. Electron spin resonance and X-ray photoelectron spectroscopy techniques excluded any oxidation state, other than Cr3+. The influence:of the transition cation on glass nucleation is that of an increasing bulk effect with chromium, and thus chromium-spinel, content. The magnesium content affects spinel formation, while heat treatments up to 1100 degrees C do not. The spinel formation influences the anorthite-diopside ratio in the glass-ceramic, with a large favour towards the pyroxene.
Solubility, reactivity and nucleation effect of Cr2O3 in the CaO-MgO-Al2O3-SiO2 glassy system / Barbieri, Luisa; Leonelli, Cristina; Manfredini, Tiziano; Pellacani, Gian Carlo; Siligardi, Cristina; E., Tondello; R., Bertoncello. - In: JOURNAL OF MATERIALS SCIENCE. - ISSN 0022-2461. - STAMPA. - 29(23):(1994), pp. 6273-6280.
Solubility, reactivity and nucleation effect of Cr2O3 in the CaO-MgO-Al2O3-SiO2 glassy system
BARBIERI, Luisa;LEONELLI, Cristina;MANFREDINI, Tiziano;PELLACANI, Gian Carlo;SILIGARDI, Cristina;
1994
Abstract
The effect of Cr2O3 on some anorthite-diopside glass-ceramics has been investigated up to amounts of 5 mol%. The solubility in the glassy compositions analysed is total for the oxide, but for amounts higher than 0.5 mol%, an insoluble spinel form, MgCr2O4, precipitates. Ultraviolet-visible spectroscopy has proved to be the most sensitive technique to the presence of Cr(III) in a crystalline spinel site, followed by X-ray diffraction and scanning electron microscopy observations. Electron spin resonance and X-ray photoelectron spectroscopy techniques excluded any oxidation state, other than Cr3+. The influence:of the transition cation on glass nucleation is that of an increasing bulk effect with chromium, and thus chromium-spinel, content. The magnesium content affects spinel formation, while heat treatments up to 1100 degrees C do not. The spinel formation influences the anorthite-diopside ratio in the glass-ceramic, with a large favour towards the pyroxene.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris