We report for the first time an extended series of correlated origin independent calculations of nuclear magnetic shielding tensors using the approach of continuous transformation of the origin of the current density to annihilate its diamagnetic contribution. A systematic study was undertaken to develop optimal basis sets for H, C, N, O, F correlated nuclear magnetic shieldings, looking for the best compromise between accuracy and size. Beyond Hartree-Fock calculations were carried out at two levels of accuracy, the multiconfigurational self-consistent field based on the complete active space scheme, and the second-order polarization propagator approximation (SOPPA). In addition we present the first shielding calculations employing the second-order polarization propagator approximation with coupled cluster singles and doubles amplitudes SOPPA (CCSD).
Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach / Ligabue, Andrea; Spa, Sauer; Lazzeretti, Paolo. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - STAMPA. - 118:15(2003), pp. 6830-6845. [10.1063/1.1557918]
Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach
LIGABUE, Andrea;LAZZERETTI, Paolo
2003
Abstract
We report for the first time an extended series of correlated origin independent calculations of nuclear magnetic shielding tensors using the approach of continuous transformation of the origin of the current density to annihilate its diamagnetic contribution. A systematic study was undertaken to develop optimal basis sets for H, C, N, O, F correlated nuclear magnetic shieldings, looking for the best compromise between accuracy and size. Beyond Hartree-Fock calculations were carried out at two levels of accuracy, the multiconfigurational self-consistent field based on the complete active space scheme, and the second-order polarization propagator approximation (SOPPA). In addition we present the first shielding calculations employing the second-order polarization propagator approximation with coupled cluster singles and doubles amplitudes SOPPA (CCSD).Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris