We consider the time-dependent one-dimensional nonlinear Schrodinger equation with a pointwise singular potential. We prove that if the strength of the nonlinear term is small enough, then the solution is well defined for any time, regardless of the choice of initial data; in contrast, if the nonlinearity power is larger than a critical value, for some initial data a blow-up phenomenon occurs in finite time. In particular, if the system is initially prepared in the ground state of the linear part of the Hamiltonian, then we obtain an explicit condition on the parameters for the occurrence of the blow-up.

The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1 / R., Adami; Sacchetti, Andrea. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL. - ISSN 0305-4470. - STAMPA. - 38:39(2005), pp. 8379-8392. [10.1088/0305-4470/38/39/006]

The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1

SACCHETTI, Andrea
2005

Abstract

We consider the time-dependent one-dimensional nonlinear Schrodinger equation with a pointwise singular potential. We prove that if the strength of the nonlinear term is small enough, then the solution is well defined for any time, regardless of the choice of initial data; in contrast, if the nonlinearity power is larger than a critical value, for some initial data a blow-up phenomenon occurs in finite time. In particular, if the system is initially prepared in the ground state of the linear part of the Hamiltonian, then we obtain an explicit condition on the parameters for the occurrence of the blow-up.
2005
38
39
8379
8392
The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1 / R., Adami; Sacchetti, Andrea. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL. - ISSN 0305-4470. - STAMPA. - 38:39(2005), pp. 8379-8392. [10.1088/0305-4470/38/39/006]
R., Adami; Sacchetti, Andrea
File in questo prodotto:
File Dimensione Formato  
JPA_Adami_Sacchetti_2005_VQR.pdf

Accesso riservato

Tipologia: Altro
Dimensione 178.06 kB
Formato Adobe PDF
178.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/303435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact