We consider the time-dependent one-dimensional nonlinear Schrodinger equation with a pointwise singular potential. We prove that if the strength of the nonlinear term is small enough, then the solution is well defined for any time, regardless of the choice of initial data; in contrast, if the nonlinearity power is larger than a critical value, for some initial data a blow-up phenomenon occurs in finite time. In particular, if the system is initially prepared in the ground state of the linear part of the Hamiltonian, then we obtain an explicit condition on the parameters for the occurrence of the blow-up.
The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1 / R., Adami; Sacchetti, Andrea. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL. - ISSN 0305-4470. - STAMPA. - 38:39(2005), pp. 8379-8392. [10.1088/0305-4470/38/39/006]
The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1
SACCHETTI, Andrea
2005
Abstract
We consider the time-dependent one-dimensional nonlinear Schrodinger equation with a pointwise singular potential. We prove that if the strength of the nonlinear term is small enough, then the solution is well defined for any time, regardless of the choice of initial data; in contrast, if the nonlinearity power is larger than a critical value, for some initial data a blow-up phenomenon occurs in finite time. In particular, if the system is initially prepared in the ground state of the linear part of the Hamiltonian, then we obtain an explicit condition on the parameters for the occurrence of the blow-up.File | Dimensione | Formato | |
---|---|---|---|
JPA_Adami_Sacchetti_2005_VQR.pdf
Accesso riservato
Tipologia:
Altro
Dimensione
178.06 kB
Formato
Adobe PDF
|
178.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris