Low-molecular weight heparins (LMWHs), as compared with unfractionated heparin (UFH), present superior bioavailability, much longer plasma half-life, and lower incidence of side effects. For these reasons, over the past two decades LMWHs have become the drugs of choice for the treatment of deep venous thrombosis, pulmonary embolism, arterial thrombosis, and unstable angina. Furthermore, their use in acute ischemic stroke is currently under study. LMWHs are obtained by UFH depolymerization, which can be performed using various methods, including nitrous acid depolymerization, cleavage by beta-elimination of benzyl ester, enzymatic depolymerization, and peroxyl radical-dependent depolymerization. This article addresses the chemical depolymerization, obtained by free radical attack (mainly hydroxyl radical), of heparin. The electron spin resonance (ESR) spectroscopy, coupled to the spin trapping technique, was employed to study this reaction. Free radical-mediated heparin depolymerization was performed under different chemical conditions. The final products of the reactions were purified and classified on the basis of their molecular weight and other characteristics. The level of heparin fragmentation was different depending on the type of depolymerization reaction used. Moreover, the level of reproducibility and the resulting radical species were different for every type of reaction performed.
Free radical generation during chemical depolymerization of heparin / Rota, Cristina; L., Liverani; F., Spelta; G., Mascellani; Tomasi, Aldo; Iannone, Anna; E., Vismara. - In: ANALYTICAL BIOCHEMISTRY. - ISSN 0003-2697. - STAMPA. - 344:2(2005), pp. 193-203. [10.1016/j.ab.2005.06.043]
Free radical generation during chemical depolymerization of heparin
ROTA, Cristina;TOMASI, Aldo;IANNONE, Anna;
2005
Abstract
Low-molecular weight heparins (LMWHs), as compared with unfractionated heparin (UFH), present superior bioavailability, much longer plasma half-life, and lower incidence of side effects. For these reasons, over the past two decades LMWHs have become the drugs of choice for the treatment of deep venous thrombosis, pulmonary embolism, arterial thrombosis, and unstable angina. Furthermore, their use in acute ischemic stroke is currently under study. LMWHs are obtained by UFH depolymerization, which can be performed using various methods, including nitrous acid depolymerization, cleavage by beta-elimination of benzyl ester, enzymatic depolymerization, and peroxyl radical-dependent depolymerization. This article addresses the chemical depolymerization, obtained by free radical attack (mainly hydroxyl radical), of heparin. The electron spin resonance (ESR) spectroscopy, coupled to the spin trapping technique, was employed to study this reaction. Free radical-mediated heparin depolymerization was performed under different chemical conditions. The final products of the reactions were purified and classified on the basis of their molecular weight and other characteristics. The level of heparin fragmentation was different depending on the type of depolymerization reaction used. Moreover, the level of reproducibility and the resulting radical species were different for every type of reaction performed.File | Dimensione | Formato | |
---|---|---|---|
Anal Biochem.pdf
Solo gestori archivio
Tipologia:
Versione pubblicata dall'editore
Dimensione
258.33 kB
Formato
Adobe PDF
|
258.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris