We review the main characteristics of optical excitations of semiconductor nanotubes, as obtained from accurate ab-initio theories and model calculations as well as experimental evidence, and discuss them in light of the previous understanding of other quasi-one-dimensional semiconducting systems. We point out striking similarities of nanotubes with III-V quantum wires and conjugated polymers, especially (i) the clear excitonic nature of absorption, very far from the single-particle behaviour; (ii) its manifestations in optical spectra, where excitonic peaks are accompanied by a strong intensity reduction at the onset of the free-particle continuum; (iii) the strategies that allow experimental access to exciton binding energies. The recent theoretical and experimental evidence obtained on semiconducting single-walled nanotubes converges quantitatively to a picture of strongly bound excitons (about 0.3-1.0 eV for nanotubes with 0.4-1.0 nm diameter). We discuss its implications and list a few open issues of relevance to fundamental understanding and optoelectronic applications. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Optical excitations of quasi-one-dimensional systems: carbon nanotubes versus polymers and semiconductor wires / Prezzi, Deborah; Molinari, Elisa. - In: PHYSICA STATUS SOLIDI. A, APPLICATIONS AND MATERIALS SCIENCE. - ISSN 1862-6300. - STAMPA. - 203:14(2006), pp. 3602-3610. [10.1002/pssa.200622407]

Optical excitations of quasi-one-dimensional systems: carbon nanotubes versus polymers and semiconductor wires

PREZZI, Deborah;MOLINARI, Elisa
2006

Abstract

We review the main characteristics of optical excitations of semiconductor nanotubes, as obtained from accurate ab-initio theories and model calculations as well as experimental evidence, and discuss them in light of the previous understanding of other quasi-one-dimensional semiconducting systems. We point out striking similarities of nanotubes with III-V quantum wires and conjugated polymers, especially (i) the clear excitonic nature of absorption, very far from the single-particle behaviour; (ii) its manifestations in optical spectra, where excitonic peaks are accompanied by a strong intensity reduction at the onset of the free-particle continuum; (iii) the strategies that allow experimental access to exciton binding energies. The recent theoretical and experimental evidence obtained on semiconducting single-walled nanotubes converges quantitatively to a picture of strongly bound excitons (about 0.3-1.0 eV for nanotubes with 0.4-1.0 nm diameter). We discuss its implications and list a few open issues of relevance to fundamental understanding and optoelectronic applications. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2006
203
14
3602
3610
Optical excitations of quasi-one-dimensional systems: carbon nanotubes versus polymers and semiconductor wires / Prezzi, Deborah; Molinari, Elisa. - In: PHYSICA STATUS SOLIDI. A, APPLICATIONS AND MATERIALS SCIENCE. - ISSN 1862-6300. - STAMPA. - 203:14(2006), pp. 3602-3610. [10.1002/pssa.200622407]
Prezzi, Deborah; Molinari, Elisa
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/22768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact