BACKGROUND: Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid with conjugated double bonds that constitutes the most abundant fatty acid with conjugated dienes (CDs) in humans. CLA, erroneously considered in the past as a product of lipoperoxidation, has a dietary origin and has shown to possess anticarcinogenic and anti-atherogenic activity, mainly in animal studies. CLA can be metabolized to conjugated linolenic acid (CD18:3) and to conjugated eicosatrienoic acid (CD20:3) and these metabolites may be implicated in CLA activity. Because of the presence of dyslipidemia and the high incidence of cardiovascular and neoplastic diseases in uremic patients, we evaluated CLA and its metabolites in these patients in order to evaluate their metabolism and site distribution. METHODS: We measured CLA, CD18:3, CD20:3, CD fatty acid hydroperoxides (lipoperoxidation products), and linoleic acid in the plasma, adipose tissue, and red blood cell (RBC) membranes by using high-pressure liquid chromatography in the following groups: (1) 23 chronic renal failure (CRF) patients with creatine clearance (CCr)> 10 mL/min (26.2 +/- 16.7); (2) 21 end-stage CRF patients in conservative treatment with CCr <10 mL/min (6.8 +/- 1.8); (3) 30 hemodialysis (HD) patients; and (4) 30 healthy controls. RESULTS: The incorporation of CLA, CD18:3, and CD20:3 in RBC membranes was significantly reduced in group 1 and was even more reduced in groups 2 and 3. CLA significantly increased both in the plasma and adipose tissue of end-stage CRF patients only. CD18:3 and CD20:3 did not change in the plasma and adipose tissue of any group. No significant changes in linoleic acid and CD fatty acid hydroperoxides were found. CONCLUSIONS: The alterations of CD in CRF patients are not due to lipoperoxidation. The increased levels of CLA in plasma and adipose tissue of end-stage CRF patients may be due either to a reduced metabolization of CLA to CD18:3 and CD20:3, or to an altered site distribution with reduced incorporation in cellular membranes and accumulation in the plasma and adipose tissue. The clinical significance of these changes remains to be investigated.
Changes in conjugated linoleic acid and its metabolites in patients with chronic renal failure / L., Lucchi; S., Banni; M. P., Melis; E., Angioni; G., Carta; V., Casu; R., Rapanà; A., Ciuffreda; F. P., Corongiu; Albertazzi, Alberto. - In: KIDNEY INTERNATIONAL. - ISSN 0085-2538. - STAMPA. - 58:4(2000), pp. 1695-1702. [10.1046/j.1523-1755.2000.00330.x]
Changes in conjugated linoleic acid and its metabolites in patients with chronic renal failure
ALBERTAZZI, Alberto
2000
Abstract
BACKGROUND: Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid with conjugated double bonds that constitutes the most abundant fatty acid with conjugated dienes (CDs) in humans. CLA, erroneously considered in the past as a product of lipoperoxidation, has a dietary origin and has shown to possess anticarcinogenic and anti-atherogenic activity, mainly in animal studies. CLA can be metabolized to conjugated linolenic acid (CD18:3) and to conjugated eicosatrienoic acid (CD20:3) and these metabolites may be implicated in CLA activity. Because of the presence of dyslipidemia and the high incidence of cardiovascular and neoplastic diseases in uremic patients, we evaluated CLA and its metabolites in these patients in order to evaluate their metabolism and site distribution. METHODS: We measured CLA, CD18:3, CD20:3, CD fatty acid hydroperoxides (lipoperoxidation products), and linoleic acid in the plasma, adipose tissue, and red blood cell (RBC) membranes by using high-pressure liquid chromatography in the following groups: (1) 23 chronic renal failure (CRF) patients with creatine clearance (CCr)> 10 mL/min (26.2 +/- 16.7); (2) 21 end-stage CRF patients in conservative treatment with CCr <10 mL/min (6.8 +/- 1.8); (3) 30 hemodialysis (HD) patients; and (4) 30 healthy controls. RESULTS: The incorporation of CLA, CD18:3, and CD20:3 in RBC membranes was significantly reduced in group 1 and was even more reduced in groups 2 and 3. CLA significantly increased both in the plasma and adipose tissue of end-stage CRF patients only. CD18:3 and CD20:3 did not change in the plasma and adipose tissue of any group. No significant changes in linoleic acid and CD fatty acid hydroperoxides were found. CONCLUSIONS: The alterations of CD in CRF patients are not due to lipoperoxidation. The increased levels of CLA in plasma and adipose tissue of end-stage CRF patients may be due either to a reduced metabolization of CLA to CD18:3 and CD20:3, or to an altered site distribution with reduced incorporation in cellular membranes and accumulation in the plasma and adipose tissue. The clinical significance of these changes remains to be investigated.File | Dimensione | Formato | |
---|---|---|---|
PIIS0085253815472679.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
414.54 kB
Formato
Adobe PDF
|
414.54 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris