A Feynman-Kac formula for Schrodinger operators including a one-center point interaction in R^3 plus a bounded potential is proved. Functional integration methods on similar Kac's averages with point interactions allow us to construct bounded self-adjoint semigroups in L^2(R^3), with bounded below Schrodinger generators, when V^+ \in L_loc^2 and V^- belongs to a large class of L^2 + L^-8 potentials. Moreover, a pointwise bound on the range of the semigroup is given.
Feynman integrals with point interactions / E., Franchini; Maioli, Marco. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - STAMPA. - 46:5-6(2003), pp. 685-694. [10.1016/S0898-1221(03)90134-9]
Feynman integrals with point interactions
MAIOLI, Marco
2003
Abstract
A Feynman-Kac formula for Schrodinger operators including a one-center point interaction in R^3 plus a bounded potential is proved. Functional integration methods on similar Kac's averages with point interactions allow us to construct bounded self-adjoint semigroups in L^2(R^3), with bounded below Schrodinger generators, when V^+ \in L_loc^2 and V^- belongs to a large class of L^2 + L^-8 potentials. Moreover, a pointwise bound on the range of the semigroup is given.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0898122103901349-main.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
595.87 kB
Formato
Adobe PDF
|
595.87 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris