A family of finite difference methods for the linear hyperbolic equations, constructed on a six-point stencil, is presented. The family depends on 3 parameters and includes many of the classical linear schemes. The approximation method is based on the use of two different grids. One grid is used to represent the approximated solution, the other (the collocation grid) is where the equation is to be satisfied. The two grids are related in such a way that the exact and the discrete operators have a common space which is as large as possible.
Superconsistent Discretizations with Application to Hyperbolic Equation / Funaro, Daniele. - In: SIBIRSKII ZHURNAL VYCHISLITEL'NOI MATEMATIKI. - ISSN 1560-7526. - STAMPA. - v. 6, n.1:(2003), pp. 89-99.
Superconsistent Discretizations with Application to Hyperbolic Equation
FUNARO, Daniele
2003
Abstract
A family of finite difference methods for the linear hyperbolic equations, constructed on a six-point stencil, is presented. The family depends on 3 parameters and includes many of the classical linear schemes. The approximation method is based on the use of two different grids. One grid is used to represent the approximated solution, the other (the collocation grid) is where the equation is to be satisfied. The two grids are related in such a way that the exact and the discrete operators have a common space which is as large as possible.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris