In the realm of creative expression, not everyone possesses the gift of effortlessly translating their imaginative visions into flawless sketches. More often than not, the outcome resembles an abstract, perhaps even slightly distorted representation. The art of producing impeccable sketches is not only challenging but also a time-consuming process. Our work is the first of this kind in transforming abstract, sometimes deformed garment sketches into photorealistic catalog images, to empower the everyday individual to become their own fashion designer. We create Sketch2Stitch, a dataset featuring over 65,000 abstract sketch images generated from garments of DressCode and VITONHD, two benchmark datasets in the virtual try-on task. Sketch2Stitch is the first dataset in the literature to provide abstract sketches in the fashion domain. We propose a StyleGAN-based generative framework that bridges freehand sketching with photorealistic garment synthesis. We demonstrate that our framework allows users to sketch rough outlines and optionally provide color hints, producing realistic designs in seconds. Experimental results demonstrate, both quantitatively and qualitatively, that the proposed framework achieves superior performance against various baselines and existing methods on both subsets of our dataset. Our work highlights a pathway toward AI-assisted fashion design tools, democratizing garment ideation for students, independent designers, and casual creators.

Sketch2Stitch: GANs for Abstract Sketch-Based Dress Synthesis / Farooq Khan, Faizan; Mohamed Bakr, Eslam; Morelli, Davide; Cornia, Marcella; Cucchiara, Rita; Elhoseiny, Mohamed. - (2026). ( IEEE/CVF Winter Conference on Applications of Computer Vision Tucson, Arizona March 6-10, 2026).

Sketch2Stitch: GANs for Abstract Sketch-Based Dress Synthesis

Davide Morelli;Marcella Cornia;Rita Cucchiara;
2026

Abstract

In the realm of creative expression, not everyone possesses the gift of effortlessly translating their imaginative visions into flawless sketches. More often than not, the outcome resembles an abstract, perhaps even slightly distorted representation. The art of producing impeccable sketches is not only challenging but also a time-consuming process. Our work is the first of this kind in transforming abstract, sometimes deformed garment sketches into photorealistic catalog images, to empower the everyday individual to become their own fashion designer. We create Sketch2Stitch, a dataset featuring over 65,000 abstract sketch images generated from garments of DressCode and VITONHD, two benchmark datasets in the virtual try-on task. Sketch2Stitch is the first dataset in the literature to provide abstract sketches in the fashion domain. We propose a StyleGAN-based generative framework that bridges freehand sketching with photorealistic garment synthesis. We demonstrate that our framework allows users to sketch rough outlines and optionally provide color hints, producing realistic designs in seconds. Experimental results demonstrate, both quantitatively and qualitatively, that the proposed framework achieves superior performance against various baselines and existing methods on both subsets of our dataset. Our work highlights a pathway toward AI-assisted fashion design tools, democratizing garment ideation for students, independent designers, and casual creators.
2026
IEEE/CVF Winter Conference on Applications of Computer Vision
Tucson, Arizona
March 6-10, 2026
Farooq Khan, Faizan; Mohamed Bakr, Eslam; Morelli, Davide; Cornia, Marcella; Cucchiara, Rita; Elhoseiny, Mohamed
Sketch2Stitch: GANs for Abstract Sketch-Based Dress Synthesis / Farooq Khan, Faizan; Mohamed Bakr, Eslam; Morelli, Davide; Cornia, Marcella; Cucchiara, Rita; Elhoseiny, Mohamed. - (2026). ( IEEE/CVF Winter Conference on Applications of Computer Vision Tucson, Arizona March 6-10, 2026).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1390288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact