Many cells of the nervous system have been shown to release exosomes, a subclass of secreted vesicles of endosomal origin capable of transferring biomolecules among cells: this transfer modality represents a novel physiological form of intercellular communication between neural cells. Herein, we demonstrated that progranulin (PGRN), a protein targeted to the classical secretory pathway, is also secreted in association with exosomes by human primary fibroblasts. Moreover, we demonstrated that null mutations in the progranulin gene (GRN), a major cause of frontotemporal dementia, strongly reduce the number of released exosomes and alter their composition. In vitro GRN silencing in SHSY-5Y cells confirmed a role of PGRN in the control of exosome release. It is believed that depletion of PGRN in the brain might cause neurodegeneration in GRN-associated frontotemporal dementia. We demonstrated that, along with shortage of the circulating PGRN, GRN null mutations alter intercellular communication. Thus, a better understanding of the role played by exosomes in GRN-associated neurodegeneration is crucial for the development of novel therapies for these diseases.
Loss of exosomes in progranulin-associated frontotemporal dementia / Benussi, Luisa; Ciani, Miriam; Tonoli, Elisa; Morbin, Michela; Palamara, Luisa; Albani, Diego; Fusco, Federica; Forloni, Gianluigi; Glionna, Michela; Baco, Monika; Paterlini, Anna; Fostinelli, Silvia; Santini, Benedetta; Galbiati, Elisabetta; Gagni, Paola; Cretich, Marina; Binetti, Giuliano; Tagliavini, Fabrizio; Prosperi, Davide; Chiari, Marcella; Ghidoni, Roberta. - In: NEUROBIOLOGY OF AGING. - ISSN 0197-4580. - (2016), pp. 41-49. [10.1016/j.neurobiolaging.2016.01.001]
Loss of exosomes in progranulin-associated frontotemporal dementia
Miriam Ciani;
2016
Abstract
Many cells of the nervous system have been shown to release exosomes, a subclass of secreted vesicles of endosomal origin capable of transferring biomolecules among cells: this transfer modality represents a novel physiological form of intercellular communication between neural cells. Herein, we demonstrated that progranulin (PGRN), a protein targeted to the classical secretory pathway, is also secreted in association with exosomes by human primary fibroblasts. Moreover, we demonstrated that null mutations in the progranulin gene (GRN), a major cause of frontotemporal dementia, strongly reduce the number of released exosomes and alter their composition. In vitro GRN silencing in SHSY-5Y cells confirmed a role of PGRN in the control of exosome release. It is believed that depletion of PGRN in the brain might cause neurodegeneration in GRN-associated frontotemporal dementia. We demonstrated that, along with shortage of the circulating PGRN, GRN null mutations alter intercellular communication. Thus, a better understanding of the role played by exosomes in GRN-associated neurodegeneration is crucial for the development of novel therapies for these diseases.| File | Dimensione | Formato | |
|---|---|---|---|
|
Benussi Ciani 2016.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] closed
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




