We investigate the problem of optimally placing virtual network functions in 5G-based virtualized infrastructures according to a green paradigm that pursues energy-efficiency. This optimization problem can be modelled as an articulated 0-1 Linear Program based on a flow model. Since the problem can prove hard to be solved by a state-of-the-art optimization software, even for instances of moderate size, we propose a new fast matheuristic for its solution. Preliminary computational tests on a set of realistic instances return encouraging results, showing that our algorithm can find better solutions in considerably less time than a state-of-the-art solver.

A matheuristic for green and robust 5G virtual network function placement / Bauschert, T.; D'Andreagiovanni, F.; Kassler, A.; Wang, C.. - 11454:(2019), pp. 430-438. (Intervento presentato al convegno 22nd International Conference on Applications of Evolutionary Computation, EvoApplications 2019, held as Part of EvoStar 2019 tenutosi a deu nel 2019) [10.1007/978-3-030-16692-2_29].

A matheuristic for green and robust 5G virtual network function placement

D'Andreagiovanni F.
;
2019

Abstract

We investigate the problem of optimally placing virtual network functions in 5G-based virtualized infrastructures according to a green paradigm that pursues energy-efficiency. This optimization problem can be modelled as an articulated 0-1 Linear Program based on a flow model. Since the problem can prove hard to be solved by a state-of-the-art optimization software, even for instances of moderate size, we propose a new fast matheuristic for its solution. Preliminary computational tests on a set of realistic instances return encouraging results, showing that our algorithm can find better solutions in considerably less time than a state-of-the-art solver.
2019
22nd International Conference on Applications of Evolutionary Computation, EvoApplications 2019, held as Part of EvoStar 2019
deu
2019
11454
430
438
Bauschert, T.; D'Andreagiovanni, F.; Kassler, A.; Wang, C.
A matheuristic for green and robust 5G virtual network function placement / Bauschert, T.; D'Andreagiovanni, F.; Kassler, A.; Wang, C.. - 11454:(2019), pp. 430-438. (Intervento presentato al convegno 22nd International Conference on Applications of Evolutionary Computation, EvoApplications 2019, held as Part of EvoStar 2019 tenutosi a deu nel 2019) [10.1007/978-3-030-16692-2_29].
File in questo prodotto:
File Dimensione Formato  
Bauschert.pdf

Open access

Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 278.62 kB
Formato Adobe PDF
278.62 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1388998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact