We consider a graph theory problem motivated by the self-assembly of DNA graph structures using branched junction molecules with flexible arms (called 'tiles' in the combinatorial model). More precisely, we want to determine a set of tiles that realizes a target graph G using the minimum number of bond-edge types so that no graph with order smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert V(G)\vert$$\end{document} can be realized; the parameter of interest is denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_2(G)$$\end{document}. We present an approach that provides an upper bound for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_2(G)$$\end{document} using certain multipartite subgraphs of G. We provide some numerical conditions characterizing such multipartite graphs in terms of the degree of their vertices. Then, we apply our method to the graphs corresponding to the Platonic solids.
A multipartite approach for the self-assembly of DNA graph structures / Bonvicini, S.; Ferrari, M. M.. - In: NATURAL COMPUTING. - ISSN 1567-7818. - Jewels of Biocomputing:(2025), pp. 1-15. [10.1007/s11047-025-10053-6]
A multipartite approach for the self-assembly of DNA graph structures
Bonvicini S.
;Ferrari M. M.
2025
Abstract
We consider a graph theory problem motivated by the self-assembly of DNA graph structures using branched junction molecules with flexible arms (called 'tiles' in the combinatorial model). More precisely, we want to determine a set of tiles that realizes a target graph G using the minimum number of bond-edge types so that no graph with order smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert V(G)\vert$$\end{document} can be realized; the parameter of interest is denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_2(G)$$\end{document}. We present an approach that provides an upper bound for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_2(G)$$\end{document} using certain multipartite subgraphs of G. We provide some numerical conditions characterizing such multipartite graphs in terms of the degree of their vertices. Then, we apply our method to the graphs corresponding to the Platonic solids.| File | Dimensione | Formato | |
|---|---|---|---|
|
unpaywall-bitstream--1879620513.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] creative-commons
Dimensione
5.46 MB
Formato
Adobe PDF
|
5.46 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




